Strong normalization for arithmetic

Variations on a theme of prawitz
  • Daniel Leivant
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 500)


Induction Hypothesis Natural Deduction Elimination Rule Replacement Rule Strong Normalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. GENTZEN [36], Die Widerspruchsfreiheit der einen Zahlentheorie, Math. Ann., 112 (1936) 493–565.MathSciNetCrossRefzbMATHGoogle Scholar
  2. D. LEIVANT [73], Existential instantiation in a system of natural deduction for intuitiouistic arithmetic, Report ZW 13/73, Mathematisch Centrum, Amsterdam, 1973.zbMATHGoogle Scholar
  3. E.G.K. LOPEZ-ESCOBAR [74], Elementary interpretations of negationless arithmetic, Fund. Math. 82 (1974) 25–38.MathSciNetzbMATHGoogle Scholar
  4. D. PRAWITZ [65], Natural Deduction, Stockholm, 1965.Google Scholar
  5. D. PRAWITZ [71], Ideas and results of proof-theory, in: FENSTAD (ed.), Proceedings of the 2nd Scandinavian logic symposium, Amsterdam, 1971, pp. 235–307.Google Scholar
  6. A.S. TROELSTRA [73], Metamathematical investigation of intuitiouistic arithmetic and analysis, Berlin etc., 1973.Google Scholar
  7. A.S. TROELSTRA [74], Note on the fan theorem, Report 74-14, University of Amsterdam, Sept. 1974.Google Scholar
  8. J. ZUCKER [74], Cut-elimination and normalization, Annals of Math. Logic 7 (1974) 1–112. *** DIRECT SUPPORT *** A00J4136 00005MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Daniel Leivant
    • 1
  1. 1.Mathematisch CentrumAmsterdamThe Netherlands

Personalised recommendations