Skip to main content

Observations on a recent generalization of completeness theorems due to Schütte

  • Conference paper
  • First Online:
⊨ISILC Proof Theory Symposion

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 500))

  • 282 Accesses

Abstract

The generalization in question is contained in [15] which will be referred to as [KMS]. It concerns the language of ordinary predicate logic without function symbols or =, (i) two kinds of valuations ρ, namely ‘total’ ones (defined for all formulas of the language considered), and ‘semi-valuations’ in the sense of Schütte's article [22], (ii) the complexity C of the valuations used, that is, validity (of a formula) for valuations ∈C is considered provided C satisfies some simple closure conditions depending on the exact choice of data determining the valuations of the kind in question—and not only ‘logical’ validity, that is, validity for the class of arbitrary valuations, and (iii) instead of finite (derivation) trees, socalled C-founded trees are used, built up according to suitable rules Rρ; in particular, rules with cut correspond to the total valuations mentioned in (i) and rules without cut correspond to semi-valuations. As in [KMS] the familiar completeness theorems, for finite (well-founded) trees built up by use of the finitary rules Rρ and logical validity (for valuations ρ), are generalized to C-founded trees and ρ-valuations of complexity C resp. The generalization also applies to ω-logic. These generalizations suggest a reappraisal of some work in the fifties on ‘constructive’ models by Mostowski [18] and Vaught [24], in which the complexity of a model is measured by its valuation on the atomic formulas.—The significance of the difference between rules with and without cut is analyzed in ‘extensional’ terms by showing that, for C of suitably low complexity, for example, for recursive C, there are formulas which are true for all total valuations ∈C, but not for all such semi-valuations.

The observations fall into 3 groups. The most controversial ones concern defects of traditional views, for example, (i) of the restriction to finite, and, in particular, formal derivation trees (which would make the use of infinite C-founded trees teratological, if not ‘illegitimate’) and (ii) of so-called operational semantics which provided—in effect, if not in intention—the only permanent, not merely heuristic, significance for cut free rules: this semantics can now be compared to the usual model theoretical interpretation refined by ‘definability’ requirements C. Only slightly less controversial are the related historical observations; ‘related’ because earlier work was presumably influenced by, and certainly formulated in terms proper to, traditional views. The least controversial observations are about open problems stated by essential use of the concepts involved in the generalization. Some of these problems are new, some are more precise versions or questions scattered in [KMS].

It is certainly possible to read this article with very little previous knowledge of the subject provided one simply ignores the issues arising from the literature specifically cited. But the principal aim is to serve the needs of those readers who have a detailed knowledge of our (venerable) subject which goes back >100 years; readers who wish to test to what extent this detailed work agrees with the expectations they—or, for that matter, its founders—have had of our subject. In short, the article is intended to have pedagogic use for the so to speak logically over privileged (with genuine problems of their own); a class which is created by progress, and therefore liable to be neglected by those who follow uncritically (once) ‘reasonable’ pedagogic traditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. W. Beth, La crise de la raison et de la logique, Collection de logique math. A, No. 12, 1957; rev. JSL 23 (1958) 35–37.

    Google Scholar 

  2. J. Y. Girard, Une extension de l'interprétation de Gödel à l'analyse et son application à l'élimination des coupures dans l'analyse et la théorie des types, pp. 63–92 in: Proc. Sec. Scand. Logic Symposium, ed. Fenstad, Amsterdam 1971.

    Google Scholar 

  3. J. Y. Girard, Quelques résultats sur les interprétations fonctionnelles, pp. 232–252 in: Springer Lecture Notes 337 (1973).

    Google Scholar 

  4. J. Y. Girard, Three valued logic and cut elimination: the actual meaning of Takeuti's conjecture, Dissertationes math. (to appear).

    Google Scholar 

  5. L. Harrington, Recursively presentable prime models, JSL 39 (1974) 305–309.

    MathSciNet  MATH  Google Scholar 

  6. G. Hasenjäger, Eine Bemerkung zu Henkins Beweis fur die Vollständigkeit des Prädikatenkalkuls der ersten Stufe, JSL 18 (1953) 42–48.

    Google Scholar 

  7. G. C. Jockusch, П 01 -classes and boolean combinations of recursively enumerable sets, JSL 39 (1974) 95–96. See also recent numbers of: Algebra and Logic.

    MathSciNet  MATH  Google Scholar 

  8. S. C. Kleene, Introduction to metamathematics, Amsterdam, 1952.

    Google Scholar 

  9. H. J. Keisler, Model theory for infinitary logic; logic with countable conjunctions and finite quantifiers, Amsterdam, 1971.

    Google Scholar 

  10. G. Kreisel, Note on arithmetic models for consistent formulae of predicate calculus, FM 37 (1950) 265–285 and Part II, Proc. XI Int. Congress of Philosophy, 14 (1953) 39–39.

    MathSciNet  MATH  Google Scholar 

  11. -, A variant to Hilbert's theory of the foundations of arithmetic, Brit. J. Phil. Sc. 4 (1953) 107–127.

    Article  MathSciNet  Google Scholar 

  12. G. Kreisel, Church's thesis: a kind of reducibility axiom for constructive mathematics, pp. 121–150 in: Intuitionism and Proof Theory, ed. Myhill et al., Amsterdam, 1970.

    Google Scholar 

  13. G. Kreisel, A survey of proof theory II, pp. 109–170 in: Proc. Sec. Scand. Logic Symposium, ed. Fenstad, Amsterdam, 1971.

    Google Scholar 

  14. G. Kreisel and J. L. Krivine, Modelltheorie, Springer Hochschultext 1972.

    Google Scholar 

  15. G. Kreisel, G. E. Mints and S. G. Simpson, The use of abstract language in elementary metamathematics; some pedagogic examples, pp. 38–131 in: Proc. 1973 Boston Logic Colloquium, ed. Parikh, Springer Lecture Notes 453; Vgl. PPS.

    Google Scholar 

  16. G. Kreisel and G. Takeuti, Formally self-referential propositions for cut-free classical analysis and related systems, Dissertationes math. 118 (1974) 4–50.

    MathSciNet  MATH  Google Scholar 

  17. G. E. Mints, On E-theorems, Zapiski 40 (1974) 101–118; siehe auch PPS.

    Google Scholar 

  18. A. Mostowski, On recursive models of formalized arithmetic, Bull Ac. Pol. Sc., cl. III 5 (1957), 705–710.

    MathSciNet  MATH  Google Scholar 

  19. A. J. Pljuškevičene, A sequential variant of R. M. Robinson's arithmetic system not containing cut rules, Proc. Steklov Inst. Math. 121 (1972) 121–150.

    MATH  Google Scholar 

  20. D. Prawitz, Some results for intuitionistic logic with second order quantification rules, pp. 259–269 in: Intuitionism and Proof Theory, ed. Myhill et al., Amsterdam, 1970.

    Google Scholar 

  21. M. G. Rogava, Sequential variants of applied predicate calculus without structural deductive rules, Proc. Steklov. Inst. Math. 121 (1972).

    Google Scholar 

  22. K. Schutte, Syntactical and semantical properties of simple type theory, JSL 25 (1960) 305–326.

    MathSciNet  MATH  Google Scholar 

  23. R. Statman, Structural complexity of proofs, Dissertation, Stanford, 1974.

    Google Scholar 

  24. R. L. Vaugh, Sentences true in all constructive models, JSL 25 (1960) 39–53.

    MathSciNet  Google Scholar 

  25. E. Zermelo, Grundlagen einer allgemeinen Theorie der mathematischen Satzsysteme, FM 25 (1935) 136–146.

    MATH  Google Scholar 

  26. J. Zucker, Cut-elimination and normalization, Annals of Math. Logic 7 (1974) 1–112.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. G. K. Lopez-Escobar and W. Veldman, Intuitionistic completeness of a restricted second-order logic, this volume.

    Google Scholar 

  28. D. Prawitz, Comments on Gentzen-type procedures and the classical notion of truth, this volume.

    Google Scholar 

Download references

Authors

Editor information

Justus Diller Gert H. Müller

Additional information

For K. Schütte on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag

About this paper

Cite this paper

Kreisel, G. (1975). Observations on a recent generalization of completeness theorems due to Schütte. In: Diller, J., Müller, G.H. (eds) ⊨ISILC Proof Theory Symposion. Lecture Notes in Mathematics, vol 500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0079551

Download citation

  • DOI: https://doi.org/10.1007/BFb0079551

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07533-2

  • Online ISBN: 978-3-540-38020-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics