Non-extensional type-free theories of partial operations and classifications, I

  • Solomon Feferman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 500)


Inductive Generation Atomic Formula Total Operation Conservative Extension Partial Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B] P. Bernays, A system of axiomatic set theory, I., J. Symbolic Logic 2 (1937) 65–77.MathSciNetzbMATHGoogle Scholar
  2. [Bℓ] S. L. Bloom, A note on the predicatively definable sets of N. N. Nepeîvoda, IBM Research Report RC 4829, #21499, May 1, 1974.Google Scholar
  3. [C] A. Chauvin, Théorie des objets et théorie des ensembles, Thèse, Université de Clermont-Ferrand (1974).Google Scholar
  4. [F] S. Feferman, A language and axioms for explicit mathematics, in Algebra and Logic (Proc. 1974 Summer Res. Inst., Monash) ed. J. N. Crossley, to appear.Google Scholar
  5. [Fil] F. B. Fitch, The systemof combinatory logic, J. Symbolic Logic 28 (1963) 87–97.MathSciNetCrossRefGoogle Scholar
  6. [Fi2] F. B. Fitch, A consistent modal set theory, (abstract), J. Symbolic Logic 31 (1966) 701.MathSciNetGoogle Scholar
  7. [Fr] H. Friedman, Axiomatic recursive function theory, in Logic Colloquium '69, eds. Gandy and Yates, North-Holland, Amsterdam (1971) 113–137.CrossRefGoogle Scholar
  8. [G] P. C. Gilmore, The consistency of partial set theory without extensionality, in Axiomatic Set Theory (1967 U.C.L.A. Symposium), Proc. Symposia in Pure Math. XIII, Part II, ed. T. Tech, A.M.S., Providence, 1974, 147–153.CrossRefGoogle Scholar
  9. [H, C] G. E. Hughes and M. J. Cresswell, An Introduction to Modal Logic, Methuen, London (1968).zbMATHGoogle Scholar
  10. [K] S. C. Kleene, Recursive functionals and quantifiers of finite types, I., Trans. Amer. Math. Soc. 91 (1959) 1–32.MathSciNetzbMATHGoogle Scholar
  11. [L] P. Lindström, First order logic and generalized quantifiers Theoria 32 (1966) 186–195.MathSciNetzbMATHGoogle Scholar
  12. [M] Y. N. Moschovakis, Elementary Induction on Abstract Structures, North-Holland, Amsterdam (1974).zbMATHGoogle Scholar
  13. [N] N. N. Nepeîvoda, A new notion of predicative truth and definability, (in Russian), Mat. Zametki 13 (1973) 735–745. (English translation Mathematical Notes 13 (1973) 493–495.)MathSciNetzbMATHGoogle Scholar
  14. [R] B. Russell, Mathematical logic as based on the theory of types (1908), reprinted in From Frege to Gödel, ed. J. van Heijenoort, Harvard University Press, Cambridge (1967) 150–182.Google Scholar
  15. [S] K. Schütte, Beweistheorie, Springer, Berlin (1960).zbMATHGoogle Scholar
  16. [Sc] D. Scott, Data types as lattices (lecture notes, Kiel Summer School in Logic, 1972), to appear.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Solomon Feferman

There are no affiliations available

Personalised recommendations