Intensionale Funktionalinterpretation der Analysis

  • Justus Diller
  • Helmut Vogel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 500)


Transfinite Induction Nach Lemma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barendregt, H.: Pairing without conventional restraints. Verviel-fältigt, Utrecht 1973.zbMATHGoogle Scholar
  2. [2]
    Diller, J., Nahm, W.: Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen. Arch. math. Logik 16 (1974), 49–66.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Diller, J., Schütte, K.: Simultane Rekursionen in der Theorie der Funktionale endlicher Typen. Arch. math. Logik 14 (1971), 69–74.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12 (1958), 280–287.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Howard, W.A.: Functional interpretation of bar induction by bar recursion. Compositio Math. 20 (1968), 107–124.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Howard, W.A.: Ordinal analysis of bar recursion of type zero. Vervielfältigt, Chicago 1969.Google Scholar
  7. [7]
    Howard, W.A., Kreisel, G.: Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis. J. Symb. Logic 31 (1966), 325–358.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Kreisel, G.: On the interpretation of non-finitist proofs, I.J. Symb. Logic 16 (1951), 241–267.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Kreisel, G.: Proof by transfinite induction and definition by transfinite recursion. J. Symb. Logic 24 (1959), 322–323.Google Scholar
  10. [10]
    Luckhardt, H.: Extensional Gödel functional interpretation. Springer Lecture Notes 306, Berlin-Heidelberg-New York 1973.Google Scholar
  11. [11]
    Spector, C.: Provably recursive functionals of analysis. Proc. Symp. Pure Math., vol. 5, AMS, Providence 1962, 1–27.zbMATHGoogle Scholar
  12. [12]
    Tait, W.W.: Normal form theorem for bar recursive functions of finite type. Proc. 2nd Scandinavian Logic Symposium, Amsterdam 1971, 353–367.Google Scholar
  13. [13]
    Troelstra, A.S.: Metamathematical investigation of intuitionistic arithmetic and analysis. Springer Lecture Notes 344, Berlin-Heidelberg-New York 1973. *** DIRECT SUPPORT *** A00J4136 00003Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Justus Diller
  • Helmut Vogel

There are no affiliations available

Personalised recommendations