Skip to main content

An almost everywhere regular, metrizable boundary supporting the maximal representing measures for bounded and quasibounded harmonic functions

  • IV Section Potential Theory
  • Conference paper
  • First Online:
Romanian-Finnish Seminar on Complex Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 743))

  • 370 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. T. E. Armstrong, Poisson Kernels and Compactifications of Brelot Harmonic Spaces, Ph.D. dissertation, Princeton University, 1973.

    Google Scholar 

  2. H. Bauer, Harmonishe Räume und ihre Potential theorie, Springer-Verlag, Berlin, 1966.

    Book  Google Scholar 

  3. M. Brelot, Lectures on Potential Theory, Tata Institute, Bombay, 1961.

    Google Scholar 

  4. _____, Axiomatique des Fonctions Harmoniques, University of Montreal Press, Montreal, 1966.

    MATH  Google Scholar 

  5. _____, On Topologies and Boundaries in Potential Theory, Springer-Verlag, Berlin, 1971.

    Book  MATH  Google Scholar 

  6. C. Constantinescu and A. Cornea, Ideale Ränder Riemannsher Flächen, Springer-Verlag, Berlin, 1963.

    Book  Google Scholar 

  7. __________, Compactifications of harmonic spaces, Nagoya Math. Jour., Vol. 25(1965), pp. 1–57.

    Article  MathSciNet  MATH  Google Scholar 

  8. __________, Potential Theory on Harmonic Spaces, Springer-Verlag, Berlin, 1972.

    Book  MATH  Google Scholar 

  9. A. Cornea, Sur la denombrabilite a l’infini d’un espace harmonique de Brelot, C. R. Acad. Sci. Paris, 1967, pp. 190A–191A.

    Google Scholar 

  10. B. Fuchssteiner, Sandwich theorems and lattice semigroups, Journal of Functional Analysis, Vol. 16, No. 1 (1974), pp. 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Gowrisankaran, Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier, Greenoble, Vol. 16 (1966), pp. 455–467.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Hunt and R. Wheeden, Positive harmonic functions on Lipshitz domains, Trans. Amer. Math. Soc., Vol. 147 (1970), pp. 507–526.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. A. Loeb, An axiomatic treatment of pairs of elliptic, differential equations, Ann. Inst. Fourier, Grenoble, Vol. 16, No. 2 (1966), pp. 167–208.

    Article  MathSciNet  MATH  Google Scholar 

  14. _____, A minimal compactification for extending continuous functions, Proc. Amer. Math. Soc. Vol. 18, No. 2 (1967), pp. 282–283.

    Article  MathSciNet  MATH  Google Scholar 

  15. _____, Compactifications of Hausdorff spaces, Proc. Amer. Math. Soc., Vol. 22, No. 3 (1969), pp. 627–634.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. A. Loeb, Applications of nonstandard analysis to ideal boundaries in potential theory, to appear in The Israel Journal of Mathematics.

    Google Scholar 

  17. P. A. Loeb and B. Walsh, The equivalence of Harnack’s principle and Harnack’s inequality in the axiomatic system of Brelot, Ann. Inst. Four., Grenoble, Vol. 15 (1965), pp. 597–608.

    Article  MathSciNet  MATH  Google Scholar 

  18. __________, A maximal regular boundary for solutions of elliptic differential equations, Ann. Inst. Fourier, Grenoble, Vol. 18, No. 1 (1968), pp. 283–308.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., Vol. 49 (1941), pp. 137–172.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Meghea, Compactification des Espaces Harmoniques, Springer-Verlag, Berlin, 1971.

    Book  MATH  Google Scholar 

  21. R. Phelps, Lectures on Choquet’s Theorem, Van Nostrand, Princeton, 1966.

    MATH  Google Scholar 

  22. A. Robinson, Nonstandard Analysis, North-Holland, Amsterdam, 1966.

    Google Scholar 

  23. M. G. Shur, A Martin compact with a non-negligible irregular boundary point, Theory of Probability and its Applications, Vol. 17, No. 2 (1972), pp. 351–355.

    Article  MATH  Google Scholar 

  24. _____, An example of a Martin compact with a nonnegligible boundary point, Trudy Moskov. Mat. Obšć 28(1973), 159–179. English translation: Trans. Moscow Math. Soc. 28(1973), 158–178 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cabiria Andreian Cazacu Aurel Cornea Martin Jurchescu Ion Suciu

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Loeb, P.A. (1979). An almost everywhere regular, metrizable boundary supporting the maximal representing measures for bounded and quasibounded harmonic functions. In: Cazacu, C.A., Cornea, A., Jurchescu, M., Suciu, I. (eds) Romanian-Finnish Seminar on Complex Analysis. Lecture Notes in Mathematics, vol 743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0079526

Download citation

  • DOI: https://doi.org/10.1007/BFb0079526

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09550-7

  • Online ISBN: 978-3-540-34861-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics