Partitions and models

  • Michael Morley
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 70)


Initial Segment Compactness Theorem Elementary Extension Partition Class Elementary Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Chang, On the formula there exist an x such that f(x) for all fεF, Notices, Amer. Math. Soc. 70 (1964), p. 587.Google Scholar
  2. 2.
    -, A simple proof of the Rabin-Keisler theorem, Bull. Amer. Math. Soc. 71 (1965), pp. 642–643.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    -, A note on the two cardinal theorem, Proc. AMS, 11 (1964) pp. 1148–1155.zbMATHGoogle Scholar
  4. 4.
    C. C. Chang, Ultraproducts and other methods of constructing models to appear in Sets, Models, and Recursion Theory, editor John Crossley, North Holland.Google Scholar
  5. 5.
    -, and H. J. Keisler, Applications of ultraproducts of pairs of cardinals to the theory of models, Pacific J. Math. 12 (1962), pp. 835–845.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Ehrenfeucht, On theories categorical in power, Fund. Math. 44 (1957) pp. 241–248.MathSciNetzbMATHGoogle Scholar
  7. 7.
    -, and A. Mostowski, Models of axiomatic theories admitting automorphisms, Fund. Math. 43 (1956) pp. 50–68.MathSciNetzbMATHGoogle Scholar
  8. 8.
    P. Erdos, A. Hajnel, and R. Rado, Partition relations for cardinal numbers, Acta Mathematica Academiae Scientiarum Hungaricae, 16 (1965), pp. 93–196.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. Erdos and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), pp. 195–228.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G. Fuhrken, Bemerkung zu einer Arbeit E. Engelers, Z. Math. Logik Grundlagen. Math., 8 (1962) pp. 91–93.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    G. Fuhrken, Languages with added quantifier “there exist at least α”, Proc. 1963 Berkeley Symposium on Theory of Models, North Holland Publ. Co., 1965 pp. 121–131.Google Scholar
  12. 12.
    -, Skolem type normal forms for first order languages with generalized quantifiers, Fund. Math. 64 (1964) pp. 291–302.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Haim Gaifman, Uniform extension operators for models and their applications, Technical Report No. 21, U. S. Office of Naval Research, Information Systems Branch.Google Scholar
  14. 14.
    W. Hanf, Incompactness in languages with infinitely long expressions, Fund. Math. 53 (1964), pp. 309–324.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Carol Karp, Languages with expressions of infinite length, Amsterdam, 1964, xx+183 pp.Google Scholar
  16. 16.
    H. J. Keisler, A survey of ultraproducts, Proc. of the 1964 Interm. Congress for Logic, Methodology and the Philosophy of Science, North Holland Publ. Co., 1965, pp. 112–126.Google Scholar
  17. 17.
    -, Ultraproducts of finite sets, Jour. of Symbolic Logic, 32 (1967) pp. 47–57.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    -, Some model theoretic results for ω-logic, Israel Jour. of Math., 4 (1966), pp. 249–261.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    H. J. Keisler, Models with orderings, to appear in Proc. of the 1967 Intern. Congress for Logic, Methodology and the Philosophy of Science.Google Scholar
  20. 20.
    H. J. Keisler, and M. Morley, Elementary extensions of models of set theory, to appear Israel Jour. of Math.Google Scholar
  21. 21.
    -, and J. Silver, Well-founded extensions of models of set theory, Notices Amer. Math. Soc., 14 (1967) pp. 256–257 (abstract).Google Scholar
  22. 22.
    R. MacDowell and E. Specker, Modelle der Arithmetik, in Infinitistic Methods, Proc. Symp. on the Foundations of Mathematics, Warsaw, September, 1959, Pergamon Press, 1961, pp. 257–263.Google Scholar
  23. 23.
    M. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965) pp. 514–538.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Morley, Omitting classes of elements, in The Theory of Models, Proc. of the 1963 Intern. Symp., North-Holland Publ. Co., 1965, pp. 265–274.Google Scholar
  25. 25.
    -, and V. Morley, The Hanf number for K-logic, Notices Amer. Math. Soc. 14 (1967), p. 556 (abstract).Google Scholar
  26. 26.
    -, and R. L. Vaught, Homogenous universal models, Math. Scand. 11 (1962), pp. 37–57.MathSciNetzbMATHGoogle Scholar
  27. 27.
    F. Rowbottom, Large cardinals and small constructible sets, Doctoral Dissertation, University of Wisconsin, 1964.Google Scholar
  28. 28.
    Jack Silver, Some applications of model theory in set theory, Doctoral Dissertation, University of California, Berkeley, 1966.Google Scholar
  29. 29.
    Dana Scott, Logic with denumerably long formulas and finite strings of quantifiers, in The Theory of Models, Proc. of the 1963 Intern. Symp., North Holland Publ. Co., 1965, pp. 329–341.Google Scholar
  30. 30.
    A. Tarski and R. L. Vaught, Arithmetical extensions of relational systems, Comp. Math. 13 (1957) pp. 81–102.MathSciNetzbMATHGoogle Scholar
  31. 31.
    R. L. Vaught, Denumerable models of complete theories, Proc. Symp. Foundations of Math., Infinitistic Methods, Pergamon Press, 1961, pp. 303–321.Google Scholar
  32. 32.
    R. L. Vaught, A. Löwenheim-Skolem theorem for cardinals far apart, in The Theory of Models, Proc. of the Intern. Symp. North Holland Publ. Co., 1963, pp. 390–401.Google Scholar
  33. 33.
    R. L. Vaught, The Löwenheim-Skolem Theorem, in Proc. of the 1964 Intern. Congress for Logic, Methodology and the Philosophy of Science, North Holland Publ. Co., 1965, pp. 81–89.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Michael Morley

There are no affiliations available

Personalised recommendations