Convergence of formal power series and analytic extension

  • J. Wiegerinck
Special Year Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1276)


Formal Power Series Complex Line Plurisubharmonic Function Positive Lebesgue Measure Uniform Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abhyankar, S.S. and T. Moh, A reduction theorem for divergent series, J. Reine Angew. Math. 241 (1970) 27–33.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Alexander, H., Projective capacity. In P: Recent developments in several complex variables, 3–27. J.E. Fornaess, ed., Ann. of Math. studies 100, Princeton Univ. Press, 1981.Google Scholar
  3. [3]
    Hartogs, F., Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen Math. Ann. 62 (1906) 1–88.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Hörmander, L., An introduction to complex analysis in several variables. North Holland Publ. Co., Amsterdam, 1973.zbMATHGoogle Scholar
  5. [5]
    Korevaar, J., Polynomial approximation numbers, capacities and extended Green functions for C and C n. In: Proc. fifth Texas symposium on approximation theory (1986) Acad. Press (to appear).Google Scholar
  6. [6]
    Korevaar, J. and J. Wiegerinck, A representation of mixed derivatives with an application to the edge-of-the-wedge theorem. Nederl. Akad. Wetensch. Proc. Ser. A 88 (1985) 77–86.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Leibowitz, G.M., Lectures on complex function algebras. Scott, Foresman and Co., 1970.zbMATHGoogle Scholar
  8. [8]
    Levenberg, N. and R.E. Molzon, Convergence sets of formal power series. Preprint, Univ. of Kentucky, 1985.Google Scholar
  9. [9]
    Levenberg, N. and B.A. Taylor, Comparison of capacities in C n. In: Analyse complexe, 162–172. E. Amar. ea., ed., LNM 1094 Springer, Berlin etc., 1984.Google Scholar
  10. [10]
    Sibony, N. and P.M. Wong, Some results on global analytic sets. In: Sem. Lelong-Skoda 1978/1979, 221–237. LNM 822 Springer, Berlin etc., 1980.Google Scholar
  11. [11]
    Sathaye, A., Convergence sets of divergent power series. J. Rine Angew. Math. 283 (1976) 86–98.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Siciak, J., Extremal plurisubharmonic functions and capacities in C n. Sophia Kokyoroku in Math. 14, Sophia Univ. Tokyo, 1982.Google Scholar
  13. [13]
    Stout, E.L., The theory of uniform algebras. Bogden & Quigley, Tarrytown-on-Hudson, NY, 1971.zbMATHGoogle Scholar
  14. [14]
    Wiegerinck, J., A support theorem for Radon transforms on ® n. Nederl. Akad. Wetensch. Proc. Ser. A 88 (1985) 77–86.CrossRefzbMATHGoogle Scholar
  15. [15]
    Wiegerinck, J. and J. Korevaar, A lemma on mixed derivatives and results on holomorphic extension. Nederl. Akad. Wetensch. Proc. Ser. A 88, (1985) 351–362.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. Wiegerinck
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrinceton

Personalised recommendations