Advertisement

A remark on "convolutors in spaces of holomorphic functions"

  • Carlos A. Berenstein
  • Daniele C. Struppa
Special Year Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1276)

Keywords

Holomorphic Function Topological Vector Space Interpolation Problem Convolution Operator Unique Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berenstein, C. A. and Lesmes J., The Cauchy problem for convolution operators. Uniqueness. Mich. Math. J. 26 (1979), 333–349.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berenstein, C. A. and Taylor, B. A., A new look at interpolation theory for entire functions of one variable. Adv. in Math. 33 (1979), 109–143.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    _____, Interpolation problems in ℂn with applications to harmonic analysis. J. Anal. Math. 38 (1980), 188–254.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berenstein, C. A. and Struppa, D. C., Solutions of convolution equations in convex sets. Amer. J. Math. (1986), to appear.Google Scholar
  5. 5.
    Berenstein, C. A. and Yger, A., Ideals generated by exponential-polynomials, Adv. in Math. (1986), to appear.Google Scholar
  6. 6.
    Ehrenpreis, L., Solutions of some problems of division. Part V, Hyperbolic operators, Amer. J. Math. 84 (1962), 324–348.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Meise, R. and Vogt, D., Characterization of convolution operators on spaces of C-functions admitting a continuous linear inverse, manuscript.Google Scholar
  8. 8.
    Meril, A. and Struppa, D. C., Convolutors in spaces of holomorphic functions, these proceedings.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Carlos A. Berenstein
    • 1
    • 2
  • Daniele C. Struppa
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of MarylandCollege Park
  2. 2.Scuola Normale Superiore Piazza dei Cavalieri 7PisaItaly

Personalised recommendations