Advertisement

Biholomorphic self-maps of domains

  • Robert E. Greene
  • Steven G. Krantz
Special Year Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1276)

Keywords

Automorphism Group Pseudoconvex Domain Bergman Kernel Circular Domain Tube Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB]
    R. Abraham, Bumpy metrics, Proc. Symp. Pure Math.-XIV, Amer. Math. Soc., Providence, 1970, 1–4.Google Scholar
  2. [BED]
    E. Bedford, Invariant forms on complex manifolds with applications to holomorphic mappings, Math. Ann. 265 (1983), 377–396.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BDD]
    E. Bedford and J. Dadok, Bounded domains with prescribed automorphism groups, preprint.Google Scholar
  4. [BE]
    S. Bell, Biholomorphic mappings and the \(\bar \partial\) problem, Ann. Math. 114 (1981), 103–112.CrossRefGoogle Scholar
  5. [BEL]
    S. Bell and E. Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283–289.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BER]
    L. Bers, Riemann Surfaces, Stevens, New York, 1959.zbMATHGoogle Scholar
  7. [BERG]
    M. Berger, Pincement riemannien et pincement holomorphe, Ann. Scuola Norm. Sup. Pisa 14 (1960), 151–159.MathSciNetzbMATHGoogle Scholar
  8. [BDK]
    J. Bland, T. Duchamp, and M. Kalka, A characterization of ℂℙn by its automorphism group, Proceedings of the Complex Analysis Week at Penn State, Springer Verlag, to appear.Google Scholar
  9. [BKU]
    R. Braun, W. Karp, and H. Upmeier, On the automorphisms of circular and Reinhardt domains in complex Banach spaces, Manuscripta Mat. 25 (1978), 97–133.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [BS]
    D. Burns and S. Shnider, Geometry of hypersurfaces and mapping theorems in ℂn, Comment. Math. Helv. 54 (1979), 199–217.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [BSW]
    D. Burns, S. Shnider, and R. Wells, On deformations of strictly pseudoconvex domains, Inventiones Math. 46(1978), 237–253.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [CM]
    S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133(1974), 219–271.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [DA]
    J. D’Angelo, Hypersurfaces, orders of contact and applications, Ann. Math. 115 (1982), 615–638.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [EB]
    D. Ebin, The manifold of Riemannian metrics, Proc. Symp. Pure Math. XV, Am. Math. Soc., Providence, 1970.Google Scholar
  15. [FK]
    H. Farkas and I. Kra, Riemann Surfaces, Springer, New York, 1974.zbMATHGoogle Scholar
  16. [FE]
    C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [FK]
    G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, 1972.zbMATHGoogle Scholar
  18. [FU]
    B. A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Complex Variables, Trans. Amer. Math. Soc., Providence, 1965.zbMATHGoogle Scholar
  19. [GR]
    I. Graham, Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in ℂn with smooth boundary, Trans. Am. Math. Soc. 207(1975), 219–240.MathSciNetzbMATHGoogle Scholar
  20. [GK1]
    R. E. Greene and S. G. Krantz, Stability of the Bergman kernel and curvature properties of bounded domains, in Recent Developments in Several Complex Variables, Annals of Math. Studies 100, Princeton University Press, Princeton, 1981.Google Scholar
  21. [GK2]
    R. E. Greene and S. G. Krantz, Deformations of complex structures, estimates for the \(\bar \partial\) equation, and stability of the Bergman kernel, Adv. Math 43(1982), 1–86.MathSciNetCrossRefGoogle Scholar
  22. [GK3]
    R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261(1982), 425–446.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [GK4]
    R. E. Greene and S. G. Krantz, Stability of the Caratheodory and Kobayashi metrics and applications to biholomorphic mappings, in Complex Analysis of Several Variables, Proc. Symp. Pure Math. 41, Amer. Math. Soc., Providence, 1984.Google Scholar
  24. [GK5]
    R. E. Greene and S. G. Krantz, Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. Jour. 34(1985), 865–879.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [GK6]
    R. E. Greene and S. G. Krantz, Characterization of certain weakly pseudoconvex domains with non-compact automorphism groups, Proceedings of the Complex Analysis Week at Penn State, Springer Verlag, to appear.Google Scholar
  26. [GK7]
    R.E. Greene and S. G. Krantz, Normal families and the semicontinuity of isometry and automorphism groups, Math. Z. 190(1985), 455–567.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [GK8]
    R. E. Greene and S. G. Krantz, A new invariant metric in complex analysis and some applications, to appear.Google Scholar
  28. [HE]
    M. Heins, On the number of 1–1 directly conformal maps which a multiply-connected plane region of finite connectivity p(>2) admits onto itself, Bull. Am. Math. Soc. 52(1946), 454–457.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [HEL]
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.zbMATHGoogle Scholar
  30. [HO]
    L. Hörmander, Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1973.zbMATHGoogle Scholar
  31. [HUA]
    L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Am. Math. Soc., Providence, 1963.Google Scholar
  32. [HUC]
    A. Huckleberry and E. Oeljeklaus, Classifications Theorems for Almost Homogeneous Spaces. Institut Elie Cartan, Equipe Associée au C.N.R.S., no 839.Google Scholar
  33. [KER]
    N. Kerzman and J. P. Rosay, Fonctions plurisousharmoniques d’exhaustion borneeé et domains taut, Math. Ann. 257(1981), 171–184.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [KL]
    P. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27(1978), 275–282.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [KO]
    J. J. Kohn, Boundary behavior of \(\bar \partial\) on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom. 6(1972), 523–542.MathSciNetGoogle Scholar
  36. [KR1]
    S. Krantz, Function Theory of Several Complex Variables, John Wiley and Sons, New York, 1982.zbMATHGoogle Scholar
  37. [KR2]
    S. Krantz, Integral formulas in complex analysis, The Beijing Lectures, Ann. of Math. Studies, Princeton, 1986.Google Scholar
  38. [LEM]
    L. Lempert, Intrinsic distances and holomorphic retracts, Complex Analysis and Applications 81(1984), 341–364.MathSciNetzbMATHGoogle Scholar
  39. [LI]
    E. Ligocka, preprint.Google Scholar
  40. [LK]
    Lu Qi-Keng, On Kähler manifolds with constant curvature, Acta. Math. Sinica 16(1966), 269–281, (Chinese); (= Chinese Math. 9(1966), 283–298.)Google Scholar
  41. [MZ]
    D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, New York, 1955.zbMATHGoogle Scholar
  42. [MNA]
    A. Morimoto and T. Nagano, On pseudo-conformal transformations of hypersurfaces, J. Math. Japan 15 (1963), 289–300.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [NAR]
    R. Narasimhan, Several Complex Variables, University of Chicago Press, Chicago, 1971.zbMATHGoogle Scholar
  44. [PA]
    G. Patrizio, Characterization of strongly convex domains biholomorphic to a circular domain, Bull. Am. Math. Soc. 9(1983), 231–233.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [RO]
    J. P. Rosay, Sur une characterization de la boule parmi les domains de ℂn par son groupe d’automorphismes, Ann. Inst. Four. Grenoble XXIX(1979), 91–97.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [RU]
    W. Rudin, Function Theory in the Unit Ball ofn, Springer Verlag, New York, 1980.CrossRefGoogle Scholar
  47. [SW]
    E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Space, Princeton University Press, Princeton, 1971.zbMATHGoogle Scholar
  48. [SUN]
    T. Sunada, Holomoprhic equivalence problems for bounded Reinhardt domains, Math. Ann. 235 (1978), 111–128.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [SY]
    N. Suita and A. Yamada, On the Lu Qi-Keng conjecture, Proc. Am. Math. Soc. 50(1976), 222–294.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [TA]
    N. Tanaka, On generalized graded Lie algebras and geometric structures I, J. Math. Soc. Japan 19(1967), 215–254.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [WO]
    Bun Wong, Characterizations of the ball in ℂn by its automorphism group, Invent. Math. 41(1977), 253–257.MathSciNetCrossRefGoogle Scholar
  52. [WU]
    H. H. Wu, Normal families of holomorphic mappings, Acta Math. 119(1967), 193–233.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [YA]
    P. Yang, Automorphisms of tube domains, Am. Jour. Math. 104 (1982), 1005–1024.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Robert E. Greene
    • 1
    • 2
  • Steven G. Krantz
    • 1
    • 2
  1. 1.Department of MathematicsUCLALos AngelesUSA
  2. 2.Department of MathematicsWashington UniversitySt. LouisUSA

Personalised recommendations