Advertisement

Some properties of the canonical mapping of a complex space into its spectrum

Special Year Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1276)

Abstract

Conditions on the cohomology and on the singular locus of a complex space X are given for the canonical mapping of X into its spectrum being surjective or a homeomorphism. Especially, the case of the unbounded dimension is studied.

Keywords

Open Neighborhood Irreducible Component Complex Space Short Exact Sequence Canonical Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. |AB|.
    A. Andreotti-C. BĂnicĂ "Relative Duality on Complex Spaces I", Rev.Roum.Math., Tome XX, No 9, 981–1041, 1975.MathSciNetzbMATHGoogle Scholar
  2. |AN|.
    A. Andreotti-R. Narasimhan "Oka’s Heftungslemma and the Levi Problem for Complex Spaces", Trans.Am.Math.Soc., 111, 345–366, 1964.MathSciNetzbMATHGoogle Scholar
  3. |A1|.
    L. Alessandrini "On the Cohomology of a Holomorphically Separable Complex Analytic Space", Boll. U.M.I. (6), 1-A, 261–268, 1982.MathSciNetzbMATHGoogle Scholar
  4. |B|.
    E. Ballico "Finitezza e annullamento di gruppi di coomologia su uno spazio complesso", Boll. U.M.I.(6), 1-B, 131–142, 1982.zbMATHGoogle Scholar
  5. |BS|.
    C.BĂnicĂ-O.StĂnĂşilĂ "Mèthodes algébriques dans la théorie globale des espaces complexes, Vol.1" Gauthier-Villars, 1977.Google Scholar
  6. |C|.
    S.Coen "Sull’uso di un metodo induttivo in variabile complessa" Seminarî di Geometria 1984, Dip.Mat.Univ.Bologna, 49–91, 1985.Google Scholar
  7. |E|.
    R. Ephraim Multiplicative Linear Functionals of Stein Algebras" Pacif J. of Math., 78, 89–93, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  8. |F|.
    O.Forster "Uniqueness of Topology in Stein Algebras" in "Function Algebras" F.Bartel ed., 157–167, Scott-Foresmann, 1966.Google Scholar
  9. |FN|.
    J.E. Fornaess-R. Narasimhan "The Levi Problem on Complex Spaces with Singularities" Math.Ann. 248, 47–72, 1980.MathSciNetCrossRefzbMATHGoogle Scholar
  10. |GR|.
    H.Grauert-R.Remmert "Theory of Stein Spaces" Springer, 1979.Google Scholar
  11. |J|.
    B. Jennane "Problème de Levi et espaces holomorphiquement séparés" Math. Ann. 268, 305–316, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  12. |M|.
    A.Markoe, "Maximal Ideals of Stein Algebras" in "Conference on Complex Analysis" W.Zame ed., Dept.Math.St.Univ.N.Y.Buffalo, 25–39, 1973Google Scholar
  13. |S|.
    Y.T. Siu "Non Countable Dimensions of Cohomology Groups of Analytic Sheaves and Domains of Holomorphy" Math.Z.102, 17–29, 1967.MathSciNetCrossRefzbMATHGoogle Scholar
  14. |S2|.
    Y.T. Siu "Analytic Sheaf Cohomology Groups of Dimension n of n-dimensional Complex Spaces" Trans.A.M.S., 143, 77–94, 1963.MathSciNetzbMATHGoogle Scholar
  15. |ST|.
    Y.T.Siu-G.Trautmann "Gap-Sheaves and Extension of Coherent Analytic Subsheaves", Springer, Lect.Notes in Math., 1971.Google Scholar
  16. |W|.
    K.W. Wiegmann "Einbettungen komplexer Räume in Zahlenräume", Invent.Mat., 1, 229–242, 1966.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • S. Coen
    • 1
  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItalia

Personalised recommendations