Advertisement

Subharmonic functions and minimal surfaces

  • Urban Cegrell
Special Year Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1276)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bechenbach, E.F., and Rado, T., Subharmonic functions and minimal surfaces. Trans. Amer. Math. Soc. vol. 35 (1933), 648–661.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Bedford, E., and Taylor, B.A., The Dirichlet problem for a complex Monge-Ampere equation. Invent. Math. 37, (1976), 1–44.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Gilbarg, D., and Trudinger, N.S., Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften 224, Springer-Verlag Berlin, Heidelberg, New York, Tokyo, 1983.CrossRefzbMATHGoogle Scholar
  4. [4]
    Landkof, N.S., Foundations of Modern Potential Theory. Grundlehren der mathematischen Wissenschaften 180, Springer-Verlag Berlin, Heidelberg, New York, 1972.CrossRefzbMATHGoogle Scholar
  5. [5]
    Rado, T., On the problem of Plateau. Verlag von Julius Springer, Berlin 1933. Reprint Springer-Verlag Berlin, Heidelberg, New York, 1971.CrossRefzbMATHGoogle Scholar
  6. [6]
    Rauch, I., Taylor, B.A., The Dirichlet problem for the multidimensional Monge-Ampère equation. Rocky Mountain Journal of Mathematics 7 no. 2 (1977), 345–364.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Urban Cegrell
    • 1
  1. 1.Department of MathematicsUniversity of UmeåUmeåSweden

Personalised recommendations