Properties of projections obtained by averaging certain polynomial interpolants

  • Judith Palagallo-Price
  • Thomas E. Price
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1287)


We describe a way to compute polynomial approximants to analytic functions f(z) in the unit disk by forming the average of m polynomials of degree n−1, each of which interpolates f(z) at n equidistant points on the unit circle. The paper discusses properties of the projections so defined. Norms of these projections are calculated and the asymptotic behavior is characterized. Furthermore, these averages are used to approximate Laurent sections.


Unit Circle Average Technique Laurent Series Lebesgue Constant Taylor Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brutman, L. (1982): A sharp estimate of the Landau constants. J. Approx. Theory 34, 217–220.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Brutman, L. (1980): On the polynomials and rational projections in the complex plane. SIAM J. Numer. Anal. 17, 366–372.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brutman, L., and Pinkus, A. (1980): On the Erdös conjecture concerning minimal norm interpolation on the unit circle. SIAM J. Numer. Anal. 17, 373–375.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chalmers, B.L. and Mason, J.C. (1984): Minimal L p projections by Fourier, Taylor and Laurent Series, J. Approx. Theor. 40, 293–297.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dienes, P. (1957): The Taylor Series, Dover Publications, New York.zbMATHGoogle Scholar
  6. 6.
    Erdös, P. (1968): Problems and results on the convergence and divergence of the Lagrange interpolation polynomials and some external problems. Mathematics (Cluj) 10, 64–73.Google Scholar
  7. 7.
    Fejer, L. (1910): Lebesguesche Konstanten und divergente Fourierreihe. J. für die Reine und angew. Math. 138, 22–53.zbMATHGoogle Scholar
  8. 8.
    Galkin, P.V. (1971): Estimates for the Lebesgue constants. Proc. Steklov Inst. Math. 109, 1–3.MathSciNetGoogle Scholar
  9. 9.
    Geddes, K.O. (1978): Near-minimax polynomial approximation in an elliptical region. SIAM J. Numer. Anal. 15, 1225–1233.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Geddes, K.O. and Mason, J.C. (1975): Polynomial approximation by projections on the unit circle. SIAM J. Numer. Anal. 12, 111–120.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gronwall, T.H. (1921): A sequence of polynomials connected with the n-th roots of unity. Bull. Amer. Math. Soc. 27, 275–279.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mason, J.C. (1981): Near-minimax interpolation by a polynomial in z and z −1 on a circular annulus. IMA J. of Numer. Anal. 1, 359–367.CrossRefzbMATHGoogle Scholar
  13. 13.
    Mason, J.C. and Chalmers, B.L. (1984): Near-best L p approximations by Fourier, Taylor, and Laurent series. IMA J. of Numer. Anal. 4, 1–8.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Morris, P.D. and Cheney, E.W. (1973): Stability properties of trigonometric interpolating operators. Math. Z. 131, 153–164.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Palagallo, J.A. and Price, T.E. (1987): Near-best approximation by averaging polynomial interpolants. IMA J. of Numer. Anal. 7, 107–122.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Rivlin, T.J. (1982): On Walsh overconvergence. J. Approx. Theor. 36, 334–345.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Watson, G.N. (1930): The constants of Landau and Lebesgue. Q.J. Math. Oxford Ser. 1, 310–318.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Judith Palagallo-Price
    • 1
  • Thomas E. Price
    • 1
  1. 1.Department of Mathematical SciencesThe University of AkronAkron

Personalised recommendations