Some discrepancy theorems

  • H. N. Mhaskar
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1287)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Aljanic, R. Bojanic and M. Tomic, On the degree of convergence of Fejer-Lebesgue sums, L’Ensignment Math., 15 (1969), 21–28.Google Scholar
  2. 2.
    P.L. Duren, Theory of H p spaces, Academic Press, New York, 1970.zbMATHGoogle Scholar
  3. 3.
    T. Ganelius, Some applications on a lemma of Fourier series, Publ. de L’Institute Math., 11(1957), 9–18.zbMATHMathSciNetGoogle Scholar
  4. 4.
    H.N. Mhaskar and E.B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math Soc., 285(1984), 203–234.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    _____, Where does the sup norm of a weighted polynomial live? (A generalization of incomplete polynomials), Constr. Approx., 1(1985), 71–91.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    _____, Where does the Lp-norm of a weighted polynomial live? To appear.Google Scholar
  7. 7.
    E.A. Rakhmanov, Asymptotic properties of polynomials orthogonal on the real axis, Matem. Sb. 119(61) (1982), Math. USSR Sbornik, 47(1) (1984), 155–193.Google Scholar
  8. 8.
    S.B. Stechkin, The approximation of periodic functions by FejerGoogle Scholar
  9. 9.
    A.F. Timan, Theory of Approximation of functions of a real variable, MacMillan, New York, 1963.zbMATHGoogle Scholar
  10. 10.
    M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • H. N. Mhaskar
    • 1
  1. 1.Department of MathematicsCalifornia State University LosAngelesUSA

Personalised recommendations