Asymptotic behavior of the Christoffel function related to a certain unbounded set

  • L. S. Luo
  • J. Nuttall
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1287)


We study the asymptotic behavior, as the degree approaches infinity, of the Christoffel function at a fixed point z corresponding to a weight function of the type exp(−|z|λ) on the set |arg z|=π/2+α. The method generalizes that of Rakhmanov and also Mhaskar and Saff.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landkof, N.S., (1972): Foundations of Modern Potential Theory. Berlin: Springer-Verlag.CrossRefzbMATHGoogle Scholar
  2. 2.
    Luo, L.S. and J. Nuttall, (1986): Approximation theory and calculation of energies from divergent perturbation series. Phys. Rev. Lett., 57, 2241–2243.CrossRefGoogle Scholar
  3. 3.
    Mhaskar, H.N., E.B. Saff, (1984): Extremal problems for polynomials with exponential weights. Trans.Amer. Math. Soc. 285, 203–234.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Mhaskar, H.N., E.B. Saff, (1985): Where does the sup norm of a weighted polynomial live? Constr. Approx. 1: 71–91.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Moretti, G., (1964): Functions of a Complex Variable. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  6. 6.
    Muskhelishvili, N.I., (1953): Singular Integral Equations. Groningen: Noordhoff.zbMATHGoogle Scholar
  7. 7.
    Nevai, P.: Geza Freud: Christoffel functions and orthogonal polynomials, J. Approx. Theory, 48, 3–167.Google Scholar
  8. 8.
    Rakhmanov, E.A., (1984): Asymptotic properties of polynomials orthogonal on the real axis. Math. U.S.S.R. Sbornik, 47, 155–193.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Szegö, G., (1975): Orthogonal Polynomials, Amer. Math. Soc. Colloq. Pub, Vol. 23, Providence: American Mathematical Society.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • L. S. Luo
    • 1
  • J. Nuttall
    • 1
  1. 1.Department of PhysicsThe University of Western OntarioLondonCanada

Personalised recommendations