Skip to main content

Harmonic majorization, harmonic measure and minimal thinness

  • Special Year Papers
  • Conference paper
  • First Online:
Complex Analysis I

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1275))

  • 595 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Arsove and A. Huber, Local behaviour of subharmonic functions. Indiana Univ. Math. J. 22 (1973), 1191–1199.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Brawn, The Green and Poisson kernels for the strip R n×]0,1[. J. London Math. Soc. (2) 2 (1970), 439–454.

    MathSciNet  MATH  Google Scholar 

  3. T. Brawn Mean value and Phragmén-Lindelöf theorems for subharmonic functions in strips. J. London Math. Soc. (2) 3 (1971), 689–698.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Brelot, On topologies and boundaries in potential theory. Springer Lecture Notes in Mathematics 175 (1971).

    Google Scholar 

  5. M. Essén and K. Haliste, A problem of Burkholder and the existence of harmonic majorants of |x|p in certain domains in R d. Ann. Acad. Scient. Fenn. Series A.I. Mathematics, 9 (1984), 107–116.

    Article  MATH  Google Scholar 

  6. M. Essén, K. Haliste, J.L. Lewis and D.F. Shea, Harmonic majorization and classical analysis. To appear. J. London Math. Soc.

    Google Scholar 

  7. W.K. Hayman and P.B. Kennedy, Subharmonic functions. Academic Press (1976).

    Google Scholar 

  8. L.L. Helms, Introduction to potential theory. Wiley-Interscience (1969).

    Google Scholar 

  9. J.-M. G. Wu, Minimum growth of harmonic functions and thinness of a set, Math.Proc.Cambridge Philos.Soc. 95(1984), 123–133.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Carlos A. Berenstein

Additional information

Dedicated to Maurice Heins on his 70th Birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Essén, M. (1987). Harmonic majorization, harmonic measure and minimal thinness. In: Berenstein, C.A. (eds) Complex Analysis I. Lecture Notes in Mathematics, vol 1275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0078346

Download citation

  • DOI: https://doi.org/10.1007/BFb0078346

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18356-3

  • Online ISBN: 978-3-540-47899-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics