Skip to main content

Some remarks on Urysohn's inequality and volume ratio of cotype 2-spaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1267))

Abstract

This note consists of two parts. In the first part, we give a new proof of Urysohn's inequality relating a volume ratio of a central symmetric convex body K and the euclidean ball to the integral average E K *. We use this inequality in the second part through entropy estimations to give a new and very simple proof of the result from [BM1] that the volume ratios of the cotype 2-spaces are uniformly bounded by a constant depending only on the cotype 2-constant of a space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Borell. The Brunn-Minkowski inequality in Gauss spaces. Invent. Math. 30 (1975), 207–216.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bourgain, V.D. Milman. Sections euclidiennes et volume des corps symetriques convexes dans IR n. C.R. Acad. Sc. Paris, t. 300, Ser. 1, N. 13 (1985), 435–438.

    MathSciNet  MATH  Google Scholar 

  3. J. Bourgain, V.D. Milman. Distances between normed spaces, their subspaces and quotient spaces. Integral Equations and Operator Theory 9, No. 1 (1986), 31–46.

    Article  MathSciNet  MATH  Google Scholar 

  4. G.D. Chakerian. Inequalities for the difference body of a convex body. Proc. Amer. Math. Soc 18, N. 5 (1967), 879–884.

    Article  MathSciNet  MATH  Google Scholar 

  5. W.J. Davis, V.D. Milman, N. Tomczak-Jaegermann. The diameter of the space of n-dimensional spaces. Israel J. of Math., 39, N. 1–2 (1981), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Figiel, J. Lindenstrauss, V.D. Milman. The dimensions of almost spherical sections of convex bodies. Acta Math 139 (1977), 53–94.

    Article  MathSciNet  MATH  Google Scholar 

  7. V.D. Milman. Random subspaces of proportional dimension of finite dimensional normed spaces; approach through the isoperimetric inequality. Missouri Conf. Proceedings, 1984, Springer Lecture Notes, 1166 (1985), 106–115.

    MathSciNet  MATH  Google Scholar 

  8. V.D. Milman, Geometrical inequalities and mixed volumes in Local Theory of Banach Spaces. Astérisque, 131 (1985), 373–400.

    MathSciNet  MATH  Google Scholar 

  9. V.D. Milman, G. Pisier. Banach spaces with a weak cotype 2 property. Israel J. Math. 54, N. 2 (1986), 139–158.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Maurey, G. Pisier. Séries de variables aléatories vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58 (1976), 45–90.

    MathSciNet  MATH  Google Scholar 

  11. V.D. Milman, G. Schechtman. Asymptotic theory of finite dimensional normed spaces. Springer Lecture Notes, 1200 (1986).

    Google Scholar 

  12. A. Pajor. Sous-espaces ℓ n1 des espaces de Banach. Thèse de docteur, Université Paris 6, (1984).

    Google Scholar 

  13. G. Pisier. Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert. Ann. Scient. Ec. Norm. Sup. 13 (1980), 23–43.

    MathSciNet  MATH  Google Scholar 

  14. S.J. Szarek, N. Tomczak-Jaegermann. On nearly Euclidean decompositions for some classes of Banach spaces. Compositio Math. 40 (1980), 367–385.

    MathSciNet  MATH  Google Scholar 

  15. P.S. Urysohn. Mean width and volume of convex bodies in an n-dimensional space. Mat. Sbornik 31 (1924), 477–486.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joram Lindenstrauss Vitali D. Milman

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Milman, V.D. (1987). Some remarks on Urysohn's inequality and volume ratio of cotype 2-spaces. In: Lindenstrauss, J., Milman, V.D. (eds) Geometrical Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 1267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0078137

Download citation

  • DOI: https://doi.org/10.1007/BFb0078137

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18103-3

  • Online ISBN: 978-3-540-47771-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics