Note on the Landweber-Stong elliptic genus

  • Don Zagier
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1326)


Power Series Modular Form Eisenstein Series Elliptic Genus Jacobi Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.F. Atiyah and F. Hirzebruch: Spin-manifolds and group actions. In: Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), pp. 18–26. Springer, New York 1970.CrossRefGoogle Scholar
  2. 2.
    D.V. Chudnovsky and G.V. Chudnovsky: Elliptic modular functions and elliptic genera. To appear in Topology.Google Scholar
  3. 3.
    M. Eichler and D. Zagier: The Theory of Jacobi Forms. Progress in Math. 55, Birkhäuser, Boston-Basel-Stuttgart 1985.Google Scholar
  4. 4.
    P. Landweber and R.E. Stong: Circle actions on Spin manifolds and characteristic numbers. To appear in Topology.Google Scholar
  5. 5.
    S. Ochanine: Sur les genres multiplicatifs définis par des intégrales elliptiques. To appear in Topology 26 (1987) 143–151MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    E. Witten: The index of the Dirac operator in loop space. To appear in this volume.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Don Zagier
    • 1
    • 2
  1. 1.University of MarylandCollege Park
  2. 2.Max-Planck-Institut für MathematikBonnFRG

Personalised recommendations