The index of the dirac operator in loop space

  • Edward Witten
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1326)


Vector Bundle Modular Form Dirac Operator Loop Space Elliptic Genus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Witten, J. Diff. Geom. 17 (1982) 661; and in Anomalies, Geometry, and Topology, ed. W. Bardeen and A. White (World Scientific, 1985), especially pp. 91–95.Google Scholar
  2. [2]
    A. Schellekens and N. Warner, Phys. Lett. 177B (1986) 317, “Anomaly Cancellation and Self-Dual Lattices” (MIT preprint, 1986), “Anomalies, Characters, and Strings” (CERN preprint TH-4529/86); K. Pilch, A. Schellekens, and N. Warner (preprint, 1986).MathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, “Elliptic Genera and Quantum Field Theory” (Princeton preprint PUPT-1024, 1986), to appear in Comm. Math. Phys. Google Scholar
  4. [4]
    A. Pressley and G.B. Segal, Loop Groups and Their Representations (Oxford University Press, 1986).Google Scholar
  5. [5]
    M.F. Atiyah and I. Singer, Ann. Math. 87 (1968) 484, 586MathSciNetCrossRefGoogle Scholar
  6. [5]a
    M.F. Atiyah and G.B. Segal, Ann. Math. 87 (1968) 531.MathSciNetCrossRefGoogle Scholar
  7. [6]
    E. Witten, “Physics and Geometry,” address at the International Congress of Mathematicians, Berkeley, August 1986, section IV.Google Scholar
  8. [7]
    G. Moore and P. Nelson, Phys. Rev. Lett. 53 (1984) 1519.MathSciNetCrossRefGoogle Scholar
  9. [8]
    T. Killingback, “World Sheet Anomalies and Loop Geometry,” Princeton preprint (1986).Google Scholar
  10. [9]
    I.B. Frenkel, “Spinor Representations of Affine Lie Algebras,” Proc. Nat. Acad. Sci. USA 77 (1980) 6303; “Two Constructions of Affine Lie Algebra Representations,” J. Funct. Anal. 44 (1981) 259.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [10]
    M.F. Atiyah and F. Hirzebruch, in Essays in Topology and Related Subjects (Springer-Verlag, 1970), p. 18.Google Scholar
  12. [11]
    E. Witten, “Fermion Quantum Numbers in Kaluza-Klein Theory,” in the Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Foundations of Physics, eds. N. Khuri et al. (MIT Press, 1985).Google Scholar
  13. [12]
    P. Landweber and R.E. Stong, “Circle Actions on Spin Manifolds and Characteristic Numbers,” Rutgers preprint (1985), to appear in Topology; P. Landweber, “Elliptic Cohomology and Modular Forms,” to appear in this volume.Google Scholar
  14. [13]
    S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques,” to appear in Topology; “Genres Elliptiques Equivariantes,” to appear in this volume.Google Scholar
  15. [14]
    D. V. and G. V. Chudnovsky, “Elliptic Modular Forms and Elliptic Genera,” Columbia University preprint (1985), to appear in Topology.Google Scholar
  16. [15]
    D. Zagier, “Note on the Landweber-Stong Elliptic Genus,” to appear in this volume.Google Scholar
  17. [16]
    A. Hattori, “Spin Structures and S 1 Actions,” Inv. Math. 48 (1978) 7.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Edward Witten
    • 1
  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrinceton

Personalised recommendations