Constrained Hamiltonians an introduction to homological algebra in field theoretical physics

  • James D. Stasheff
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1326)


Koszul Complex Extended Phase Space Grassmann Algebra Reduce Phase Space Regular Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I.A. Batalin and G.S. Vilkoviasky, Existence theorem for gauge algebra, J. Math. Phys. 26 (1985) 172–184.MathSciNetCrossRefGoogle Scholar
  2. [2]
    —, Relativitistic S-matrix of dynamical systems with bosons and fermion constraints, Physics Letters 69B (1977) 309–312.CrossRefGoogle Scholar
  3. [3]
    C. Becchi, A. Rouet and R. Stora, Renormalization of gauge theories; Ann. Phys. 98 (1976), 287.MathSciNetCrossRefGoogle Scholar
  4. [4]
    F.A. Berends, G.J.H. Burgers and H. van Dam, On the theoretical problems in constructing interactions involving higher spin massless particles, preprint IFP234-UNC, 1984Google Scholar
  5. [5]
    L. Bonora and P. Cotta-Ramusino, Some remarks on BRS transformations, Anomalies and the Cohomology of the Lie algebra of the Group of Gauge Transformations, Comm.Math.Phys. 87 (1983), 589.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A.D. Browning and D. McMullan, The Batalin, Fradkin, Vilkovisky formalism for higher order theories, preprint.Google Scholar
  7. [7]
    G.J.H. Burgers, On the construction of field theories for higher spin massless particles, doctoral dissertation, Rijksuniversiteit te Leiden, 1985.Google Scholar
  8. [8]
    A. Douady, Obstruction primaire a la deformation, Seminaire Henri Cartan 1960/61, n o 4.Google Scholar
  9. [9]
    E.S. Fradkin and G.S. Vilkovisky, Quantization of relativistic systems with constraints, Physics Letters 55B (1975), 224–226.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    V.K.A.M. Gugenheim, On a perturbation theory for the homology of a loop space, J. Pure and Appl. Alg. 25 (1982), 197–205.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    V.K.A.M. Gugenheim and J.P. May, On the theory and application of torsion products, Mem. Amer. Math. Soc. 142 (1974).Google Scholar
  12. [12]
    V.K.A.M. Gugenheim and J. Stasheff, On Perturbations and A-structures, to appear in Proc. Soc. Math. Belg. volume in honor of Guy Hirsch.Google Scholar
  13. [13]
    M. Henneaux, Hamiltonian form of the path integral for theories with a gauge freedom, Phy. Rep. 126 (1985) 1–66.MathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Huebschmann, Perturbation Theory and Small Models for the Chains of Certain Induced Fibre Spaces, Habilitationsschrift, 1983, Heidelberg.Google Scholar
  15. [15]
    L. Lambe and J. Stasheff, Perturbation theory for iterated principal bundles, preprint.Google Scholar
  16. [16]
    D. McMullan, Yang-Mills theory and the Batalin Fradkin Vilkovisky formalism, preprint.Google Scholar
  17. [17]
    P. Perigrinus, in A Source Book in Medieval Science, E. Grant, ed., Harvard Univ. Press, Cambridge (1974), p. 368.Google Scholar
  18. [18]
    G. S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195–222.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • James D. Stasheff
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel Hill

Personalised recommendations