Advertisement

Complex cobordism theory for number theorists

  • Douglas C. Ravenel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1326)

Keywords

Elliptic Curve Elliptic Curf Elliptic Genus Cohomology Theory Stable Homotopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    J. F. Adams, Stable Homotopy and Generalized Homology, Univ. of Chicago Press, 1974.Google Scholar
  2. [A2]
    J. F. Adams, On the groups J(X), IV, Topology 5(1966), 21–71.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [DHS]
    E. Devinatz, M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory, to appear.Google Scholar
  4. [ES]
    S. Eilenberg and N. E. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, 1952.Google Scholar
  5. [Ha]
    M. Hazewinkel, Formal Groups and Applications, Academic Press, 1978.Google Scholar
  6. [Ho]
    M. J. Hopkins, Global methods in homotopy theory, to appear in Proceedings of the Durham Symposium on Homotopy Theory 1985, Cambridge University Press, 1987.Google Scholar
  7. [HKR]
    M. J. Hopkins, N. Kuhn and D. C. Ravenel, Morava K-theory and generalized characters for finite groups, to appear.Google Scholar
  8. [HS]
    M. J. Hopkins and J. H. Smith, Periodicity and stable homotopy theory, to appear.Google Scholar
  9. [Jo]
    K. Johnson, The Conner-Floyd map for formal A-modules, to appear.Google Scholar
  10. [L1]
    P. S. Landweber, Elliptic cohomology and modular forms, these Proceedings.Google Scholar
  11. [L2]
    P. S. Landweber, Homological properties of comodules over MU *(MU) and BP *(BP), Amer. J. Math. 98 (1976), 591–610.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [LRS]
    P. S. Landweber, D. C. Ravenel and R. E. Stong, Periodic cohomology theories defined by elliptic curves, to appear.Google Scholar
  13. [LT000123]
    J. Lubin and J. Tate, Formal complex multiplication in local fields, Ann. of Math. 81 (1965), 380–387.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [M]
    S. A. Mitchell, Finite complexes with A(n)-free cohomology, Topology 24(1985), 227–248.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [O]
    S. Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, to appear in Topology.Google Scholar
  16. [Q]
    D. G. Quillen, On the formal group laws of oriented and unoriented cobordism theory, Bull. Amer. Math. Soc., 75 (1969), 1293–1298.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [R1]
    D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, 1986.Google Scholar
  18. [R2]
    D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106(1984), 351–414.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [R3]
    D. C. Ravenel, Localization and periodicity in stable homotopy theory, to appear in Proceedings of the Durham Symposium on Homotopy Theory 1985, Cambridge University Press, 1987.Google Scholar
  20. [R4]
    D. C. Ravenel, Formal A-modules and the Adams-Novikov spectral sequence, J. of Pure and Applied Algebra 32(1984), 327–345.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Si]
    J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986.Google Scholar
  22. [S]
    E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.Google Scholar
  23. [St]
    R. E. Stong, Notes on Cobordism Theory, Princeton Univ. Press, 1968.Google Scholar
  24. [Wi]
    E. Witten, Elliptic genera and quantum field theory, to appear in Math. Comm. Phys. Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Douglas C. Ravenel
    • 1
  1. 1.Department of MathematicsUniversity of WashingtonSeattle

Personalised recommendations