Advertisement

Genres elliptiques equivariants

  • Serge Ochanine
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1326)

Keywords

Elliptic Genus Equivariant Cohomology Compacte Orientee Elliptic Modular Function Equivariant Cohomology Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    M.F. Atiyah et R. Bott: The moment map and equivariant cohomology. Topology 23(1984), 1–28.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M.F.Atiyah et F.Hirzebruch: Spin-manifolds and group actions. In: Essays on Topology and Related Topics, Springer-Verlag, 1970, 18–28.Google Scholar
  3. 3.
    A. Borel et F. Hirzebruch: Characteristic classes and homogeneous spaces, I, II. Amer. J. Math. 80(1958), 458–538; 81(1959), 315–382.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D.V.Chudnovsky et G.V.Chudnovsky: Elliptic modular functions and elliptic genera. Topology, à paraître.Google Scholar
  5. 5.
    S.S. Chern, F. Hirzebruch et J.-P. Serre: On the index of a fibered manifold. Proc. Amer. Math. Soc. 8(1957), 587–596.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M. Gromov et H.B. Lawson,Jr.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. I.H.E.S. 58(1983), 83–196.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    I.M. Kričever: Formal groups and Atiyah-Hirzebruch formulae. Izv. Akad. Nauk SSSR, Ser.Mat. 38(1974), 1289–1304.MathSciNetGoogle Scholar
  8. 8.
    I.M. Kričever: Obstructions for the existence of S1-actions. Bordism of branched coverings. Izv. Akad. Nauk SSSR, Ser.Mat. 40(1976), 828–844.MathSciNetGoogle Scholar
  9. 9.
    P.S.Landweber: Elliptic cohomology and modular forms. Dans ce volume.Google Scholar
  10. 10.
    P.S.Landweber et R.E.Stong: Circle actions on Spin manifolds and characteristic numbers. Topology, à paraître.Google Scholar
  11. 11.
    S.Ochanine: Sur les genres multiplicatifs définis par des intégrales elliptiques. Topology, à paraître.Google Scholar
  12. 12.
    D. Quillen: The spectrum of an equivariant cohomology ring, I, II. Annals of Math. 94(1971), 549–602.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    E.Witten: Fermion quantum numbers in Kaluza-Klein theory. In: Proceedings of the 1983 Shelter Island conference on quantum field theory and the fundamental problems of physics (ed. R.Jackiw et al.) MIT Press 1985, 227–277.Google Scholar
  14. 14.
    E.Witten: Elliptic genera and quantum field theory. Communications in Mathematical Physics, à paraître.Google Scholar
  15. 15.
    D.Zagier: Note on the Landweber-Stong elliptic genus. Dans ce volume.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Serge Ochanine
    • 1
  1. 1.CNRS, Université de Paris-Sud, MathématiqueOrsayFrance

Personalised recommendations