Advertisement

Supersingular elliptic curves and congruences for legendre polynomials

  • Peter S. Landweber
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1326)

Keywords

Formal Group Modular Form Elliptic Curve Elliptic Curf Elliptic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bateman (A. Erdelyi, ed.): Higher Transcendental Functions, vol. 2, McGraw-Hill, 1953.Google Scholar
  2. 2.
    D.V. Chudnovsky and G.V. Chudnovsky: Elliptic modular functions and elliptic genera, Topology, to appear.Google Scholar
  3. 3.
    D.V. Chudnovsky and G.V. Chudnovsky: letter dated February 6, 1986.Google Scholar
  4. 4.
    D.V. Chudnovsky and G.V. Chudnovsky: Elliptic formal groups over Z and Fp in applications to number theory, computer science and topology, in this volume.Google Scholar
  5. 5.
    D.V. Chudnovsky, G.V. Chudnovksy, P.S. Landweber, S. Ochanine and R.E. Stong: Integrality and divisibility of elliptic genera, to appear.Google Scholar
  6. 6.
    E. Copson: An Introduction to the Theory of Functions of a Complex Variable, Oxford Univ. Press, 1935.Google Scholar
  7. 7.
    L. Euler: De integrationis aequationis differentialis \(m dx/\sqrt {1 - x^4 } = n dy/\sqrt {1 - y^4 }\), Opera omnia XX (1), 58–79, Teubner-Füssli, 1911–1976.Google Scholar
  8. 8.
    B.H. Gross: letter dated April 7, 1986.Google Scholar
  9. 9.
    J. Igusa: On the transformation theory of elliptic functions, Amer. J. Math. 81 (1959), 436–452.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J. Igusa: On the algebraic theory of elliptic modular functions, J. Math. Soc. Japan 20 (1968), 96–106.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    D. Jackson: Fourier Series and Orthogonal Polynomials, Math. Assoc. Amer., 1941.Google Scholar
  12. 12.
    P.S. Landweber: Elliptic cohomology and modular forms, in this volume.Google Scholar
  13. 13.
    P.S. Landweber, D.C. Ravenel and R.E. Stong: Periodic cohomology theories defined by elliptic curves, to appear.Google Scholar
  14. 14.
    P.S. Landweber and R.E. Stong: Circle actions on Spin manifolds and characteristic numbers, Topology, to appear.Google Scholar
  15. 15.
    S. Lang and H. Trotter: Frobenius Distributions in GL2-Extensions, Lecture Notes in Math. 504, Springer-Verlag, 1976.Google Scholar
  16. 16.
    A.I. Markushevich: The Remarkable Sine Functions, Elsevier, 1966.Google Scholar
  17. 17.
    S. Ochanine: Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987), 143–151.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D.C. Ravenel: Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, 1986.Google Scholar
  19. 19.
    J.-P. Serre: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331.MathSciNetCrossRefGoogle Scholar
  20. 20.
    J.H. Silverman: The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer-Verlag, 1986.Google Scholar
  21. 21.
    J.H. Wahab: New cases of irreducibilities for Legendre polynomials, Duke J. Math. 19 (1952), 165–176.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    E.T. Whittaker and G.N. Watson: A Course of Modern Analysis, fourth edition, Cambridge Univ. Press, 1927.Google Scholar
  23. 23.
    Ph. Cassou-Noguès and M.J. Taylor: Elliptic Functions and Rings of Integers, Birkhauser Boston, 1987.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Peter S. Landweber
    • 1
    • 2
  1. 1.Rutgers UniversityNew Brunswick
  2. 2.Institute for Advanced StudyPrinceton

Personalised recommendations