Elliptic cohomology and modular forms

  • Peter S. Landweber
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1326)


Modular Form Elliptic Function Elliptic Genus Cohomology Theory Homology Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.A. Baas: On bordism theories of manifolds with singularities, Math. Scand. 33 (1973), 279–302.MathSciNetzbMATHGoogle Scholar
  2. 2.
    K. Chandrasekharan: Elliptic Functions, Springer-Verlag, 1985.Google Scholar
  3. 3.
    D.V. Chudnovsky and G.V. Chudnosky: Elliptic modular functions and elliptic genera, Topology, to appear.Google Scholar
  4. 4.
    D.V. Chudnovsky and G.V. Chudnovsky: letter dated February 6, 1986.Google Scholar
  5. 5.
    D.V. Chudnovsky, G.V. Chudnovsky, P.S. Landweber, S. Ochanine and R.E. Stong: Integrality and divisibility of elliptic genera, in preparation.Google Scholar
  6. 6.
    B.H. Gross: letter dated April 7, 1986.Google Scholar
  7. 7.
    F. Hirzebruch: Topological Methods in Algebraic Geometry, Springer-Verlag, 1966.Google Scholar
  8. 8.
    J. Igusa: On the transformation theory of elliptic functions, Amer. J. Math. 81 (1959), 436–452.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. Igusa: On the algebraic theory of elliptic modular functions, J. Math. Soc. Japan 20 (1968), 96–106.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    D. Jackson: Fourier Series and Orthogonal Polynomials, Math. Assoc. Amer., 1941.Google Scholar
  11. 11.
    M. Kervaire and J. Milnor: Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proc. Int. Cong. Math., Edinburgh (1958), 454–458.Google Scholar
  12. 12.
    P.S. Landweber: Homological properties of comodules over MU*MU and BP*BP, Amer. J. Math. 98 (1976), 591–610.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P.S. Landweber: Supersingular elliptic curves and congruences for Legendre polynomials, in this volume.Google Scholar
  14. 14.
    P.S. Landweber, D.C. Ravenel and R.E. Stong: Periodic cohomology theories defined by elliptic curves, in preparation.Google Scholar
  15. 15.
    P.S. Landweber and R.E. Stong: Circle actions on Spin manifolds and characteristic numbers, Topology, to appear.Google Scholar
  16. 16.
    O.K. Mironov: Multiplications in cobordism theories with singularities, and Steenrod-tom Dieck operations, Izv. Akad. Nauk SSSR, Ser. Mat. 42 (1978), 789–806 = Math. USSR Izvestija 13 (1979), 89–106.MathSciNetGoogle Scholar
  17. 17.
    S. Ochanine: Signature modulo 16, invariants de Kervaire généralisés, et nombres caractéristiques dans la K-théorie réelle, Supplément au Bull. Soc. Math. France 109 (1981), Mémoire n° 5.Google Scholar
  18. 18.
    S. Ochanine: Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987), 143–151.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    E. Witten: Elliptic genera and quantum field theory, Communications in Mathematical Physics 109 (1987), 525–536.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    D. Zagier: Note on the Landweber-Stong elliptic genus, in this volume.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Peter S. Landweber
    • 1
    • 2
  1. 1.Rutgers UniversityNew Brunswick
  2. 2.Institute for Advanced StudyPrinceton

Personalised recommendations