Elliptic genera: An introductory overview

  • Peter S. Landweber
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1326)


Modular Form Dirac Operator Loop Space Elliptic Genus Circle Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Alvarez, T. Killingback, M. Mangano and P. Windey: String theory and loop space index theorems, Commun. Math. Physics 111 (1987), 1–10.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    O. Alvarez, T. Killingback, M. Mangano and P. Windey: The Dirac-Ramond operator in string theory and loop space index theorems, Nuclear Physics B (Proc. Suppl.) 1A (1987), 189–216.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. F. Atiyah and F. Hirzebruch: Spin-manifolds and group actions, in Essays on Topology and Related Topics, Springer-Verlag, 1970, 18–28.Google Scholar
  4. 4.
    M. F. Atiyah and I. M. Singer: The index of elliptic operators, III, Annals of Math. 87 (1968), 546–604.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces, I, II, Amer. J. Math. 80 (1958), 456–538 and 81 (1959), 315–382.MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. D. Borsari: Bordism of semi-free circle actions on Spin manifolds, Rutgers University thesis, 1985.Google Scholar
  7. 7.
    L. D. Borsari: Bordism of semifree circle actions on Spin manifolds, Trans. Amer. Math. Soc. 301 (1987), 479–487.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. S. Chern, F. Hirzebruch and J. P. Serre: On the index of a fibered manifold, Proc. Amer. Math. Soc. 8 (1957), 587–596.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D. V. Chudnovsky and G. V. Chudnovsky: Elliptic modular forms and elliptic genera, Topology, to appear.Google Scholar
  10. 10.
    P. E. Conner and E. E. Floyd: The Relation of Cobordism to K-theories, Lecture Notes in Math. 28, Springer-Verlag, 1966.Google Scholar
  11. 11.
    L. Euler: De integrationis aequationis differentialis m \(dx/\sqrt {1 - x^4 } = n dy/\sqrt {1 - y^4 }\), Opera omnia XX (1), 58–79, Teubner-Füssli, 1911–1976.Google Scholar
  12. 12.
    T. P. Killingback: World-sheet anomalies and loop geometry. Nuclear Physics B, to appear.Google Scholar
  13. 13.
    P. S. Landweber: Elliptic cohomology and modular forms, in this volume.Google Scholar
  14. 14.
    P. S. Landweber, D. C. Ravenel and R. E. Stong: Periodic cohomology theories defined by elliptic curves, to appear.Google Scholar
  15. 15.
    P. S. Landweber and R. E. Stong: Circle actions on Spin manifolds and characteristic numbers, Topology, to appear.Google Scholar
  16. 16.
    S. Ochanine: Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987), 143–151.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    S. Ochanine: Genres elliptiques équivariants, in this volume.Google Scholar
  18. 18.
    S. Ochanine: unpublished notes, September 1985; Elliptic genera for S1-manifolds, conference talk, September 1986.Google Scholar
  19. 19.
    K. Pilch, A. Schellekens and N. Warner: Path integral calculation of string anomalies, Nuclear Physics B287 (1987), 362–380.MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Schellekens and N. Warner: Anomalies and modular invariance in string theory, Phys. Lett. 177B (1986), 317–323.MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Schellekens and N. Warner: Anomaly cancellation and self-dual lattices, Phys. Lett. 181B (1986), 339–343.MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Schellekens and N. Warner: Anomalies, characters and strings, Nucl. Physics B287 (1987), 317–361.MathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Segal: Elliptic cohomology, Séminaire Bourbaki, 1987–88, no. 695 (Février 1988).Google Scholar
  24. 24.
    C. H. Taubes: S1 actions and elliptic genera, Harvard University preprint, 1987.Google Scholar
  25. 25.
    P. Windey: The new loop space index theorems and string theory, Lectures at the XXV Ettore Majorana Summer School for Subnuclear Physics: The Superworld II, Erice, 1987, to appear.Google Scholar
  26. 26.
    E. Witten: Fermion quantum numbers in Kaluza-Klein theory, in Shelter Island, II: Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics (ed. R. Jackiw, N. Khuri, S. Weinberg and E. Witten), MIT Press, 1985, 227–277.Google Scholar
  27. 27.
    E. Witten: Elliptic genera and quantum field theory, Commun. Math. Physics 109 (1987), 525–536.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    E. Witten: The index of the Dirac operator in loop space, in this volume.Google Scholar
  29. 29.
    D. Zagier: Note on the Landweber-Stong elliptic genus, in this volume.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Peter S. Landweber
    • 1
    • 2
  1. 1.Rutgers UniversityNew Brunswick
  2. 2.Institute for Advanced StudyPrinceton

Personalised recommendations