Advertisement

Formule de selberg et formes d'espaces hyperboliques compactes

  • Nelson Subia
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 497)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    J. CHAZARAIN Formule de Poisson pour les variétés riemanniennes. Invent. Math. vol 24 (1974), p. 65–82.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. SELBERG Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. vol. 20 (1956), p. 47–87.MathSciNetzbMATHGoogle Scholar
  3. [3]
    R. TAKAHASHI Sur les représentations unitaires des groupes de Lorentz généralisés. Bull. Soc. Math. France, vol 91 (1963), p. 289–433.MathSciNetzbMATHGoogle Scholar
  4. [4]
    J. WOLF Spaces of constant curvature. Mc. Graw-Hill, 1967.Google Scholar
  5. [5]
    A. PREISSMANN Quelques propriétés globales des espaces de Riemann. Comment. Math. Helv. vol 15 (1943) p. 175–216.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. FLENSTED-JENSEN Paley-Wiener type theorems for a differential operator connected with symmetric spaces. Arkiv för Matematik vol 10 (1972).Google Scholar
  7. [7]
    H.P. Mc KEAN Selberg's trace formula as applied to a compact Riemann surface. Comment. Pure and Applied Math. vol 25 (1972), p. 225–246.MathSciNetCrossRefGoogle Scholar
  8. [8]
    B. RANDOL Small eigenvalues of the Laplace operator on compact Riemann surfaces. Preprint.Google Scholar
  9. [9]
    H. HUBER Zur analytischen Theorie hyperbolischen Raumormen und Bewegungsgruppen. Math. Ann. vol 138 (1959), p. 1–26.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Nelson Subia

There are no affiliations available

Personalised recommendations