Advertisement

Initiation a la theorie des groupes moyennables

  • Pierre Eymard
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 497)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    M. DAY Fixed point theorems for compact convex sets, Illinois J. of Math., 5, 1961, p. 585–589; and 8, 1964, p. 713.MathSciNetzbMATHGoogle Scholar
  2. [2]
    J. DIEUDONNE Sur le produit de composition, II, J. Math. Pures Appl., 39, 1960, p. 275–292.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. DIXMIER Les moyennes invariantes dans les semigroupes et leurs applications, Acta Sci. Math. Szeged, 12 A, 1950, p. 213–227.MathSciNetzbMATHGoogle Scholar
  4. [4]
    J. DIXMIER Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.zbMATHGoogle Scholar
  5. [5]
    P. EYMARD L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92, 1964, p. 181–236.MathSciNetzbMATHGoogle Scholar
  6. [6]
    P. EYMARD Moyennes invariantes et Représentations unitaires, Lecture Notes no 300, Springer-Verlag 1973.Google Scholar
  7. [7]
    H. FURSTENBERG A Poisson formula for semi-simple Lie groups, Annals of Math., 77, 1963, p. 335–386.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    I. GLICKSBERG On convex hulls of translates, Pacific J. of Math. 13, 1963, p. 97–113.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    F.P. GREENLEAF Invariant means on topological groups, New-York, 1969.Google Scholar
  10. [10]
    F.P. GREENLEAF and W.R. EMERSON Covering properties and Følner conditions for locally compact groups, Math. Zeitschr. 102, 1967, p. 370–384.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. HELGASON Differential Geometry and Symmetric spaces, Ac. Press, New-York, 1962.zbMATHGoogle Scholar
  12. [12]
    A. HULANICKI Means and Følner conditions on locally compact groups, Studia Math. 27, 1966, p. 87–104.MathSciNetzbMATHGoogle Scholar
  13. [13]
    H. LEPTIN On a certain invariant of a locally compact group, Bull. Amer. Math. Soc. 72, 1966, p. 870–874.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    H. LEPTIN On locally compact groups with invariant means, Proc. Amer. Math. Soc. 19, 1968, p. 489–494.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    H. LEPTIN Sur l'algèbre de Fourier d'un groupe localement compact, CR. Acad. Sc. Paris, t. 266, p. 1180–1182, 1968.MathSciNetzbMATHGoogle Scholar
  16. [16]
    H. REITER Classical harmonic analysis and locally compact groups, Oxford, 1968.Google Scholar
  17. [17]
    N.W. RICKERT Amenable groups and groups with the fixed point property, Transactions Amer. Math. Soc. 127, 1967, p. 221–232.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. von NEUMANN Zur allgemeinen Theorie des Masses, Fund. Math. 13, 1929, p. 73–116.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Pierre Eymard

There are no affiliations available

Personalised recommendations