Advertisement

Representations irreductibles des groupes semi-simples complexes

  • Michel Duflo
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 497)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    BRUHAT F. Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France. 84 (1956) 97–205.MathSciNetzbMATHGoogle Scholar
  2. [2]
    DIXMIER J. Algebres enveloppantes. Gauthier-Villars, Paris (1974).zbMATHGoogle Scholar
  3. [3]
    GELFAND I.M. et NAIMARK M.A. Représentations unitaires des groupes classiques. Trudy Matematika. Moscou (1950)(En russe).Google Scholar
  4. [4]
    HELGASON S. A duality for symmetric spaces with applications to group representations. Advances in math. 5(1970) 1–154.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    HIRAI T. Structure of induced representations and characters of irreducible representations of complex semisimple Lie groups, Lecture notes in Math. 266 (1972) 167–188.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    KOSTANT B. On the existence and irreducibility of certain series of representations. Bull. Amer. Math. Soc. 75.(1969) 627–642.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    LANGLANDS R.P. On the classification of irreducible representations of real algebraic groups (preprint) Princeton (1973).Google Scholar
  8. [8]
    LEPOWSKY J. Algebraic results on representations of semisimple Lie groups. Trans. Amer. Math. Soc. 176 (1973) 1–44.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    PARTHASARATHY K.R., RANGA RAO R. et VARADARAJAN V.S. Representations of complex semisimple Lie groups and Lie algebras, Ann. Math. 85 (1967) 383–429.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    SCHIFFMANN G. Intégrales d'entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971) 3–72.MathSciNetzbMATHGoogle Scholar
  11. [11]
    WALLACH N.R. Cyclic vectors and irreducibility for principal series representations. I. Trans. Amer. Math. Soc. 158 (1971) 107–113; II, Ibid. 164 (1972) 389–396.MathSciNetzbMATHGoogle Scholar
  12. [12]
    WALLACH N.R. Harmonic analysis on homogeneous spaces. Marcel Dekker, New-York (1973).zbMATHGoogle Scholar
  13. [13]
    WARNER G. Harmonic analysis on semisimple Lie groups (2 volumes) Springer, Berlin (1972).CrossRefGoogle Scholar
  14. [14]
    ZELOBENKO D.P. Symmetry in a class of elementary representations of a semisimple complex Lie group. Func. Analysis and Applic. 1 (1967) 15–38.MathSciNetzbMATHGoogle Scholar
  15. [15]
    ZELOBENKO D.P. The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group. Math. URSS. Izvestija 2 (1968) 105–128.CrossRefGoogle Scholar
  16. [16]
    ZELOBENKO D.P. Operational calculus on a complex semisimple Lie group. Math. URSS. Izvestija 3 (1969) 881–915.CrossRefGoogle Scholar
  17. [17]
    ZELOBENKO D.P. Analyse harmonique sur les groupes de Lie semi-simples complexes. Moscou (1974) (En russe).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Michel Duflo
    • 1
  1. 1.Départment de MathématiquesUniversité de Paris VIIParis Cédex 05

Personalised recommendations