Advertisement

The principle of spatial averaging and inertial manifolds for reaction-diffusion equations

  • John Mallet-Paret
  • George R. Sell
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1248)

Keywords

Invariant Manifold Spatial Average Exponential Dichotomy Inertial Manifold Universal Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Conway, D. Hoff, J. Smoller, (1978) large time behavior of solutions of nonlinear reaction-diffusion equations. SIAM J. Appl. Math., 35, #11, p. 1–16.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Constantin, C. Foias, B. Nicolaenko, R. Temam, (1986) Integral manifolds and intertial manifolds for dissipative partial differential equations. To appear.Google Scholar
  3. 3.
    C. Foias, B. Nicolaenko, G.R. Sell, R. Temam, (1985) Variétés inertielles pour l'équation de Kuramoto-Sivashkinsky, C.R. Acad. Sc. Paris, Serie 1, 301, p. 285–288.MathSciNetzbMATHGoogle Scholar
  4. 4.
    C. Foias, B. Nicolaenko, G.R. Sell, R. Temam, (1986) Inertial manifold for the Kuramoto Sivashinsky equation. To appear.Google Scholar
  5. 5.
    C. Foias, G.R. Sell, R. Temam, (1985) Variétés Inertielles des équations differentielles dissipatives, C.R. Acad. Sci. Paris, Serie 1, 301, p. 139–141.MathSciNetzbMATHGoogle Scholar
  6. 6.
    C. Foias, G.R. Sell, R. Temam (1986) Inertial manifolds for nonlinear evolutionary equations, IMA Preprint No. 234.Google Scholar
  7. 7.
    J.K. Hale, L.T. Magalhaes, W.M. Oliva, (1984) An Introduction to Infinite Dimensional Dynamical Systems-Geometric Theory. Appl. Math. Sciences No. 47, Springer-Verlag, Berlin-Heidelberg-New York.CrossRefzbMATHGoogle Scholar
  8. 8.
    G.H. Hardy, E.M. Wright, (1962) An Introduction to the Theory of Numbers. Oxford Press.Google Scholar
  9. 9.
    D. Henry, (1981) Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, No. 840, Springer-Verlag, Berlin-Heidelberg-New York.zbMATHGoogle Scholar
  10. 10.
    M. Hirsch, C. Pugh, M. Shub, (1977) Invariant Manifolds. Lecture Notes in Mathematics, No. 583, Springer-Verlag, Berlin-Heidelberg-New York.zbMATHGoogle Scholar
  11. 11.
    J. Mallet-Paret, (1976) Negatively invariant sets of compact maps and an extension of a Theorem of Cartwright, J. Diff. Eqns., 22, p. 331–348.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. Mallet-Paret, G.R. Sell (1986a) Inertial manifolds for reaction-diffusion equations in higher space dimension. To appear.Google Scholar
  13. 13.
    J. Mallet-Paret, G.R. Sell (1986b) A counterexample to the existence of inertial manifolds. To appear.Google Scholar
  14. 14.
    J. Richards, (1982) On the gaps between numbers which are the sum of two squares, Adv. Math., vol. 46, pp. 1–2.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R.J. Sacker, G.R. Sell, (1980) The spectrum of an invariant submanifold, J. Diff. Eqns., vol. 38, p. 135–160.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • John Mallet-Paret
  • George R. Sell

There are no affiliations available

Personalised recommendations