Advertisement

Brauer Groups pp 148-187 | Cite as

On a variant of the witt and Brauer groups

  • Stephen U. Chase
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 549)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Artin, C. Nesbitt, R. Thrall, Rings with minimum conditions, University of Michigan Press, Ann Arbor 1944.zbMATHGoogle Scholar
  2. 2.
    H. Bass, Algebraic K-theory, W.A. Benjamin, Inc., New York 1968.zbMATHGoogle Scholar
  3. 3.
    -, Unitary algebraic K-theory, In: Algebric K-Theory III (Hermitian K-Theory and Geometric Applications), Lecture Notes in Math. no. 343, Springer-Verlag, Berlin-Heidelberg-New York 1973.CrossRefGoogle Scholar
  4. 4.
    S. Chase and A. Rosenberg, A theorem of Harrison, Kummer theory, and Galois algebras, Nagoya Math. J. vol. 27 (1966), pp. 663–685.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. Chase and M. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Math. no. 97, Springer-Verlag, Berlin-Heidelberg-New York 1969.CrossRefzbMATHGoogle Scholar
  6. 6.
    S. Chase, Infinitesimal group scheme actions on finite field extensions, to appear in Amer. J. Math.Google Scholar
  7. 7.
    S. Chase, On principal homogeneous spaces and bilinear forms, preprint (1975).Google Scholar
  8. 8.
    M. Demazure and P. Gabriel, Groupes algebrique (Tome I), North Holland Publishing Co., Amsterdam 1970.zbMATHGoogle Scholar
  9. 9.
    A. Frohlich and C.T.C. Wall, Equivariant Brauer groups in algebraic number theory, Bull. Soc. Math. France 25 (1971), pp.91–96.MathSciNetzbMATHGoogle Scholar
  10. 10.
    J. Gamst and K. Hoechsmann, Quaternions generalises, Compt. Rendu. Acad. Sci. Paris 269(1969), pp.560–562.MathSciNetzbMATHGoogle Scholar
  11. 11.
    D. Harrison, Abelian extensions of arbitrary fields, Trans. Amer. Math. Soc. 52 (1963), pp.230–235.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    K. Hoechsmann, Über nicht-kommutative abelsche algebren, J. Reine Angew. Math. 218 (1965), pp. 1–5.MathSciNetzbMATHGoogle Scholar
  13. 13.
    M. Knebusch, A. Rosenberg, and R. Ware, Structure of Witt rings and quotients of abelian group rings, Amer. J. Math. 54 (1972), pp. 119–155.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    T.-Y. Lam, The algebraic theory of quadratic forms, W.A. Benjamin, Inc., New York 1973.zbMATHGoogle Scholar
  15. 15.
    F. Long, A generalization of the Brauer group of graded algebras, Proc. London Math. Soc. 29 (1974), pp. 237–256.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    -, The Brauer group of dimodule algebras, J. of Algebra 30 (1974), pp.559–601.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. Orzech, A cohomological description of abelian Galois extensions, Trans. Amer. Math. Soc. 137 (1969), pp.481–499.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    S. Shatz, Cohomology of Artinian group schemes over local fields, Ann. Math. 79 (1964), pp.411–449.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    -, Galois theory, In: Category theory, homology theory and their applications (Vol. I), Lecture Notes in Math. no. 86, Springer-Verlag, Berlin-Heidelberg-New York 1969.Google Scholar
  20. 20.
    -, Principal homogeneous spaces for finite group schemes, Proc. Amer. Math. Soc. 22 (1969), pp.678–680.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Sweedler, Hopf algebras, W.A. Benjamin, Inc., New York 1969.zbMATHGoogle Scholar
  22. 22.
    M. Takeuchi, private communication.Google Scholar
  23. 23.
    W. Waterhouse, Principal homogeneous spaces and group scheme extensions, Trans. Amer. Math. Soc. 153 (1971), pp.181–189.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), pp.143–211.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Stephen U. Chase

There are no affiliations available

Personalised recommendations