Advertisement

Brauer Groups pp 134-147 | Cite as

Brauer groups of graded algebras

  • Morris Orzech
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 549)

Keywords

Hopf Algebra Direct Summand Galois Extension Module Algebra Smash Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bass, Lectures on Topics in Algebraic K-Theory, Tata Institute for Fundamental Research, Bombay, 1967.zbMATHGoogle Scholar
  2. 2.
    M. Beattie, A direct sum decomposition for the Brauer group of H-module algebras, J. Algebra, to appear.Google Scholar
  3. 3.
    S.U. Chase, and M.E. Sweedler, Hopf algebras and Galois Theory, Lecture Notes in Mathematics 97, Springer-Verlag, Berlin, 1969.zbMATHGoogle Scholar
  4. 4.
    L.N. Childs, The Brauer group of graded algebras II: graded Galois extensions, Trans. Amer. Math. Soc. 204 (1975), 137–160.MathSciNetzbMATHGoogle Scholar
  5. 5.
    -, G. Garfinkel and M. Orzech, The Brauer group of graded Azumaya algebras, Trans. Amer. Math. Soc. 175 (1973), 299–326MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M.-A. Knus, Algebras graded by a group, Category Theory, Homology Theory and their Applications II, Lecture Notes in Mathematics 92, Springer-Verlag, Berlin, 1969.Google Scholar
  7. 7.
    F.W. Long, A generalization of the Brauer group of graded algebras, Proc. London Math. Soc. (3) 29 (1974), 237–256.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    -, The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559–601.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. Orzech, On the Brauer group of modules having a grading and an action, Canad. J. Math., to appear.Google Scholar
  10. 10.
    D.J. Picco and M.I. Platzeck, Graded algebras and Galois extensions, Rev. Un. Mat. Argentina 25 (1971), 401–415.MathSciNetzbMATHGoogle Scholar
  11. 11.
    C. Small, The Brauer-Wall group of a commutative ring, Trans. Amer. Math. Soc. 156 (1971), 455–491.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    -, The group of quadratic extensions, J. Pure Applied Alg. 2 (1972), 83–105.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    C.T.C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1964), 187–199.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Morris Orzech

There are no affiliations available

Personalised recommendations