Advertisement

The Pierce represencation of Azumaya algebras

  • George Szeto
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 549)

Keywords

Commutative Ring Central Extension Homomorphic Image Polynomial Identity Orthogonal Idempotent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Amitsur, Polynomial identities and Azumaya algebras, J. Alg. 27(1973), 117–125.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc. 63(1948), 457–481.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. Artin, On Azymaya algebras and finite dimension representation of rings, J. Alg. 11(1969), 532–563.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97(1960), 367–409.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    G. Azumaya, On maximality central algebras, Nagoya J. Math. 2 (1951), 119–150.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H. Bass, Lectures on topics in algebraic K-theory, Tata Institute of Fundamental Research, Bombay, 1967.zbMATHGoogle Scholar
  7. 7.
    G. Bergman, Hereditary commutative ring and centres of hereditary rings, Proc. London Math. Soc. 23(1971), 214–236.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    G. Dauns and K. Hofmann, The representation of biregular rings by sheaves, Math. Zeitschr. 91 (1966), 103–123.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    F. DeMeyer and E. Engraham, Separable algebras over commutative rings, Springer-Verlag, Berlin-Heidelbergy-New York, 1971.CrossRefGoogle Scholar
  10. 10.
    I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54(1948), 575–580.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Magid, Pierce's representation and separable algebras, Ill. J. Math. 15(1971), 114–121.MathSciNetzbMATHGoogle Scholar
  12. 12.
    R. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. 70, 1967.Google Scholar
  13. 13.
    C. Procesi, On a theorem of M. Artin, J. Alg. 22(1972), 309–315.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    O. Villamayor and D. Zelinsky, Galois theory for rings with infinitely many idempotents, Nagoya J. Math. 35(1969), 359–368.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • George Szeto

There are no affiliations available

Personalised recommendations