Advertisement

On Brauer groups in characteristic p

  • M. A. Knus
  • M. Ojanguren
  • D. J. Saltman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 549)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AG]
    M. Auslander and O. Goldman, “The Brauer group of a commutative ring”, Trans. Amer. Math. Soc. 97 (1960), 367–409.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [B]
    Hyman Bass, Algebraic K-Theory, Benjamin 1968.Google Scholar
  3. [BK]
    Barr and Knus, “Extensions of derivations”, Proc. Amer. Math. Soc. 28 (1971), 313–14.MathSciNetzbMATHGoogle Scholar
  4. [C]
    M. Cipolla, “Remarks on the lifting of algebras over Henselian pairs”, (to appear, Math. Z.).Google Scholar
  5. [CE]
    H. Cartan and S. Eilenberg, Homological Algebra, Princeton Math. Series 19, 1956.Google Scholar
  6. [CR]
    Chase and Rosenberg, “Amitsur cohomology and the Brauer group”, Mem. of Math. Soc. 52 (1963), 20–65.MathSciNetzbMATHGoogle Scholar
  7. [DeM]
    F. R. DeMeyer, “The Brauer group of a ring modulo an ideal”, (to appear).Google Scholar
  8. [DI]
    DeMeyer and Ingraham, Separable algebras over commutative rings, Springer L. N. 181, 1971.Google Scholar
  9. [Gi]
    J. Giraud, Cohomologie non-abélienne, Springer Grundlehren 179, 1971.Google Scholar
  10. [Gr]
    A. Grothendieck, “Le groupe de Brauer I”, in Dix exposés sur la cohomologie des schémas, Paris: Masson, Amsterdam: North-Holland, 1968.Google Scholar
  11. [H]
    R. Hoobler, A generalization of the Brauer group and Amitsur cohomology, Thesis, Berkeley, 1966.Google Scholar
  12. [Ho]
    Hoechsmann, “Simple algebras and derivations”, Trans. Amer. Math. Soc. 108 (1963), 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [J]
    Jacobson, Lie Algebras, Interscience Tracts in Pure and Appl. Math., No. 10, New York, 1962.Google Scholar
  14. [K]
    I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, 1954.zbMATHGoogle Scholar
  15. [Kn]
    Knus, “Sur le theoreme de Skolem-Noether et sur les derivations de algèbras d'Azumaya”, C. R. Acad. Sci. Paris Ser. A 270 (1970), 637–9.MathSciNetzbMATHGoogle Scholar
  16. [K0]
    M. A. Knus and M. Ojanguren, Theorie de la descente et algèbres d'Azumaya, Springer L. N. 389, 1974.Google Scholar
  17. [M]
    Maclane, Homology, Springer, Berlin, 1971.zbMATHGoogle Scholar
  18. [OS]
    M. Orzech and Ch. Small, The Brauer group of commutative rings, Dekker L. N. 11, 1975.Google Scholar
  19. [R]
    M. Raynaud, Anneaux locaux henséliens, Springer L. N. 169, 1970.Google Scholar
  20. [S]
    Saltman, Azymaya algebras over rings of characteristic p, Thesis, Yale University, 1976.Google Scholar
  21. [Y]
    1 S. Yuan, “Brauer groups of local fields”, Ann. of Math. (2) 82, (1965), 434–444.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Y]
    2 S. Yuan, “Brauer groups for inseparable fields”, Ann. of Math., 96, (1974), 430–447.MathSciNetzbMATHGoogle Scholar
  23. [Y]
    3 S. Yuan, “Central separable algebras with purely inseparable splitting rings of exponent one”, Trans. Amer. Math. Soc. 153, Jan. 1971, p. 427.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. A. Knus
  • M. Ojanguren
  • D. J. Saltman

There are no affiliations available

Personalised recommendations