The Brauer group of affine curves

  • F. R. DeMeyer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 549)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. N. Childs, “Mayer-Vietoris sequences and Brauer groups of non-normal domains,” Trans-Amer. Math. Soc. 196, 51–67, 1974.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    F. R. DeMeyer, “The Brauer group of a ring modulo an ideal”, rocky Mtn. J. of Math. (to appear).Google Scholar
  3. [3]
    F. R. DeMeyer and M. A. Knus, “The Brauer groups of a real curve”, P.A.M.S. (to appear).Google Scholar
  4. [4]
    A. Grothendieck, “Le groupe de Brauer I, II, III, in: Dix exposés sur la cohomologie des schèmas”, Paris, Masson et Amsterdam, North Holland, 1968, 46–188.Google Scholar
  5. [5]
    M. A. Knus, M. Ojanguren, “A Mayer-Vietoris sequence for the Brauer group”, J. of Pure and Applied Algebra, 5 (1974), 345–360.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Yu, Manin, “Cubic forms”, North Holland Math. Library Vol. 4, 1974.Google Scholar
  7. [7]
    E. Witt, “Zerlegung reeler algebraischer Funktionen in Quadrate Shiefkörper über reelem Funktionenkorper”, J. für Math. 171, 4–11, (1934).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • F. R. DeMeyer

There are no affiliations available

Personalised recommendations