Advertisement

On Brauer groups of some normal local rings

  • Lindsay N. Childs
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 549)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Andreotti, P. Salmon, Annelli con unica decomponibilita in fattori primi ed un problema di intersezioni complete, Monatsh. für Math. 61(1957), 97–142.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Artin, D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. 25 (1972), 75–95.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    B. Auslander, The Brauer group of a ringed space, J. Algebra 4 (1966), 220–273.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Auslander, O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    N. Bourbaki, Algebre Commutative VII, Paris, Hermann, 1965.zbMATHGoogle Scholar
  6. 6.
    L. Childs Mayer-Vietoris sequences and Brauer groups of non-normal domains, Trans. Amer. Math. Soc. 196 (1974), 51–67.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    -, Brauer groups of affine rings, Ring Theory, Proc. Oklahoma Conf., New York, Marcel Dekker, 1974, 83–94.zbMATHGoogle Scholar
  8. 8.
    L. Childs, G. Garfinkel, M. Orzech, On the Brauer group and factoriality of normal domains, J. Pure and Appl. Algebra 6 (1975), 111–123.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. I. Danilov, The group of ideal classes of a completed ring, Math. USSR-Sbornik 6 (1968), 493–500.CrossRefzbMATHGoogle Scholar
  10. 10.
    -, On rings with a discrete divisor class group, Math. USSR-Sbornik 17 (1972), 228–236.CrossRefzbMATHGoogle Scholar
  11. 11.
    D. Eisenbud, Some directions of recent progress in commutative algebra, Proc. Symp. Pure Math. 29 (1975), 111–128.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, 1973.Google Scholar
  13. 13.
    A. Grothendieck, Le groupe de Brauer I, in Dix Exposés sur la cohomologie des schemas, North-Holland, 1968.Google Scholar
  14. 14.
    A. Grothendieck, Le groupe de Brauer II, loc. cit. Dix Exposés sur la cohomologie des schemas, North-Holland, 1968.Google Scholar
  15. 15.
    A. Grothendieck, Le groupe de Brauer III, loc. cit. Dix Exposés sur la cohomologie des schemas, North-Holland, 1968.Google Scholar
  16. 16.
    M. Knus, M. Ojanguren, A Mayer-Vietoris sequence for the Brauer group, J. Pure Appl. Algebra 5 (1974), 345–360.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    J. Lipman, Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. IHES 36 (1969), 195–279.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Orzech, C. Small, The Brauer Group of Commutative Rings, New York, Marcell Dekker, 1975.zbMATHGoogle Scholar
  19. 19.
    J.-P. Serre, Faisceaux algebriques coherents, Ann. Math. 61 (1955), 197–278.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Lindsay N. Childs

There are no affiliations available

Personalised recommendations