Advertisement

Strings: From hadron dual models to gravity, unification and the structure of space-time

  • Yuval Ne'eman
III. Classical And Quantized Field Theory
  • 274 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1251)

Abstract

We review the evolution of the second-quantized superstring, from its birth as a theory of the hadron bootstrap to its present status as a candidate theory of Quantum Gravitational Dynamics (QGD) and Super-unification.

Keywords

Quantum Gravity Vertex Operator Open String Heterotic String Closed String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Green and J. H. Schwarz, Nucl. Phys. B181 (1981) 502; Physics Lett. 109B (1982) 444.CrossRefGoogle Scholar
  2. 2.
    M. H. Goroff and A. Sagnotti, Phys. Lett. 160B (1985) 81.CrossRefGoogle Scholar
  3. 3.
    G. 't Hooft and M. Veltman, Ann. Inst. Henri Poincaré 20 (1974) 69.Google Scholar
  4. 4.
    K. S. Stelle, Phys. Rev. D16 (1977) 953.MathSciNetGoogle Scholar
  5. 5.
    E. Sezgin and P. van Nieuwenhuizen, Phys. Rev. D21 (1980) 3269.Google Scholar
  6. 6.
    V. de Alfaro, S. Fubini, G. Rossetti and G. Furlan, Phys. Lett. 21 (1966) 576.CrossRefGoogle Scholar
  7. 7.
    R. Dolen, D. Horn and C. Schmid, Phys. Rev. Lett. 19 (1967) 402CrossRefGoogle Scholar
  8. 7a.
    A. A. Logunov, L. D. Soloviev and A. N. Tavkhelidze, Phys. Lett. 24B (1967) 181CrossRefGoogle Scholar
  9. 7b.
    K. Igi and S. Matsuda, Phys. Rev. Lett. 18 (1967) 625.CrossRefGoogle Scholar
  10. 8.
    P. G. O. Freund, Phys. Rev. Lett. 20 (1968) 235CrossRefGoogle Scholar
  11. 8a.
    H. Harari, Phys. Rev. Lett. 20 (1968) 1395.CrossRefGoogle Scholar
  12. 9.
    H. Harari, Phys. Rev. Lett. 22 (1969) 562CrossRefGoogle Scholar
  13. 9a.
    J. Rosner, Phys. Rev. Lett. 22 (1969) 689.CrossRefGoogle Scholar
  14. 10.
    G. Veneziano, Nuovo Cim. 57A (1968) 190.CrossRefGoogle Scholar
  15. 11.
    Y. Nambu, in Symmetries and Quark Models, R. Chand ed., Gordon and Breach, N.Y. (1970), p. 269Google Scholar
  16. 11a.
    L. Susskind, Nuovo Cim., 69 (1970) 457.MathSciNetCrossRefGoogle Scholar
  17. 12.
    A. M. Polyakov, Phys. Lett. 102B (1981) 207 and 211.MathSciNetCrossRefGoogle Scholar
  18. 13.
    R. C. Brower, Phys. Rev. D6 (1972) 1655.Google Scholar
  19. 14.
    M. A. Virasoro, Phys. Rev. D1 (1970) 2933.Google Scholar
  20. 15.
    V. I. Ogievetsky, Lett. Nuovo Cim. 8 (1973) 988.MathSciNetCrossRefGoogle Scholar
  21. 16.
    V. G. Kac, Math. USSR Izv. 2 (1968) 1271CrossRefGoogle Scholar
  22. 16a.
    R. V. Moody, J. of Algebra 10 (1968) 211.MathSciNetCrossRefGoogle Scholar
  23. 17.
    I. B. Frenkel and V. G. Kac, Inventiones Math. 62 (1980) 23MathSciNetCrossRefGoogle Scholar
  24. 17a.
    I. B. Frenkel, J. Func. Analysis 44 (1981) 259MathSciNetCrossRefGoogle Scholar
  25. 17b.
    G. Segal, Comm. Math. Phys. 80 (1982) 301.CrossRefGoogle Scholar
  26. 18.
    J. Thierry-Mieg and L. Beaulieu, Nucl. Phys. 228B (1983) 423.Google Scholar
  27. 19.
    M. Kato and K. Ogawa, Nucl. Phys. B212 (1983) 443.CrossRefGoogle Scholar
  28. 20.
    P. Ramond, Phys. Rev. D3 (1971) 2415.MathSciNetGoogle Scholar
  29. 21.
    A. Neveu and J. H. Schwarz, Nucl. Phys. B31 (1971) 86, and Phys. Rev. D4 (1971) 1109.CrossRefGoogle Scholar
  30. 22.
    J. H. Conway and N. J. A. Sloane, J. of Number Theory 15 (1982) 83MathSciNetCrossRefGoogle Scholar
  31. 22a.
    J. H. Conway, J. of Algebra 80 (1983) 159MathSciNetCrossRefGoogle Scholar
  32. 22b.
    Y. Ne'eman, in Conformal Groups and Structures, H. D. Doebner and A. Barut eds., Springer Verlag, Lecture Notes in Math. (Proc. of Clausthal 1985 Conference) to be pub.Google Scholar
  33. 23.
    J. Scherk and J. H. Schwarz, Nucl. Phys. B81 (1974) 118; Phys. Lett. 52B (1974) 247; 57B (1975) 463.CrossRefGoogle Scholar
  34. 24.
    S. Mandelstam, Nucl. Phys. B213 (1983) 149.MathSciNetCrossRefGoogle Scholar
  35. 25.
    M. B. Green and J. H. Schwarz, Nucl. Phys. B181 (1981) 502.CrossRefGoogle Scholar
  36. 26.
    M. B. Green and J. H. Schwarz, Phys. Lett. 136B (1984) 367.CrossRefGoogle Scholar
  37. 27.
    M. B. Green and J. H. Schwarz, Nucl. Phys. B243 (1984) 475.MathSciNetCrossRefGoogle Scholar
  38. 28.
    J. H. Schwarz, Phys. Reports 89 (1982) 223.CrossRefGoogle Scholar
  39. 29.
    M. B. Green and J. H. Schwarz, Phys. Lett. 149B (1984) 117.MathSciNetCrossRefGoogle Scholar
  40. 30.
    N. Marcus and A. Sagnotti, Phys. Lett. 119B (1982) 97.MathSciNetCrossRefGoogle Scholar
  41. 31.
    J. Thierry-Mieg, Phys. Lett. 156B (1985) 199.MathSciNetCrossRefGoogle Scholar
  42. 32.
    P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258 (1985) 46.MathSciNetCrossRefGoogle Scholar
  43. 33.
    D. Gross, J. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54 (1985) 502.MathSciNetCrossRefGoogle Scholar
  44. 34.
    M. B. Green and J. H. Schwarz, Phys. Lett. 151B (1985) 21.MathSciNetCrossRefGoogle Scholar
  45. 35.
    Y. Ne'eman and Dj. Sijacki, "Spinors for Superstrings in a Generic Curved Space" and "Superstrings in a Generic Supersymmetric Curved Space" Tel Aviv Univ.reports TAUP N174-86 and N175-86, to be pub. in Phys. Lett. B.Google Scholar
  46. 36.
    Y. Ne'eman, Ann. Inst. Henri Poincaré, A28 (1978) 369.MathSciNetGoogle Scholar
  47. 37.
    Dj. Sijacki and Y. Ne'eman, J. Math. Phys., 26 (1985) 2457.MathSciNetCrossRefGoogle Scholar
  48. 38.
    Y. Ne'eman and Dj. Sijacki, Phys. Lett. 157B (1985) 267 and 275.MathSciNetCrossRefGoogle Scholar
  49. 39.
    Y. Ne'eman, in Cosmology and Gravitation, P. G. Bergmann and V. de Sabbata eds., Plenum Press, New York (1980) Nato. Ad. St. Inst. Series B58, pp. 177–226.CrossRefGoogle Scholar
  50. 40.
    E. S. Fradkin and A. A. Tseytlin, Phys. Lett. 158B (1985) 316.MathSciNetCrossRefGoogle Scholar
  51. 41.
    C. Lovelace, Phys. Lett. 135B (1984) 75.MathSciNetCrossRefGoogle Scholar
  52. 42.
    Y. Ne'eman, "Strings Reinterpreted as Topological Elements of Space Time", Tel Aviv Univ. report TAUP N173-86, to be pub. in Phys. Lett. B.Google Scholar
  53. 43.
    S. W. Hawking, A. R. King and P. J. McCarthy, J. Math. Phys. 17 (1976) 174.MathSciNetCrossRefGoogle Scholar
  54. 44.
    E. C. Zeeman, J. Math. Phys. 5 (1964) 490; Topology 6 (1967) 161.MathSciNetCrossRefGoogle Scholar
  55. 45.
    R. Goebel, Comm. Math. Phys. 46 (1976) 289.MathSciNetCrossRefGoogle Scholar
  56. 46.
    P. Goddard, J. Goldstone, C. Rebbi and C. B. Thorn, Nucl. Phys. B56 (1973) 109.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Yuval Ne'eman
    • 1
    • 2
  1. 1.Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.University of TexasAustin

Personalised recommendations