Advertisement

Variational berezinian problems and their relationship with graded variational problems

  • Daniel Hernández Ruipérez
  • Jaime Muñoz Masqué
II. Superfield Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1251)

Keywords

Vector Field Variational Problem Lagrangian Density Comparison Theorem Lagrangian Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    García, P.L.-Muñoz Masqué, J.-On the geometrical structure of higher order variational calculus. IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics. Acad. of Sc. of Turin, 117 (1983), 127–147.Google Scholar
  2. [2]
    Hernández Ruipérez, D.-Berezinian sheaf and Poincaré duality on graded manifolds. IV Meeting in Math. Phys. Coimbra, 1984 (to appear in Travaux en cours).Google Scholar
  3. [3]
    Hernández Ruipérez, D.-Muñoz Masqué, J.-Global variational calculus on graded manifolds, I .... J. Math. Pures et Appl., 63 (1984), 283–309.zbMATHGoogle Scholar
  4. [4]
    Hernández Ruipérez, D.-Muñoz Masqué, J.-Global variational calculus on graded manifolds, II. J. Math. Pures et Appl., 63 (1985), 87–104.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Hernández Ruipérez, D.-Muñoz Masqué, J.-Infinitesimal functoriality of graded Poincaré-Cartan forms. Preprints. Univ. Salamanca, о 8. To appear in Proc. XIII Int. Conf. on Geom. Diff. Meths. in Math. Phys. Shumen (Bulgaria), 1984.Google Scholar
  6. [6]
    Hernández Ruipérez, D.-Muñoz Masqué, J.-Construction intrinseque du faisceau de Berezin d'une variété graduée. C.R. Acad. Sc. Paris, t. 301, Série I, о 20, 1985, 915–918.zbMATHGoogle Scholar
  7. [7]
    Kostant, B.-Graded manifolds, graded Lie theory and prequantization. Springer-Lecture Notes in Math., 570, 1975, 177–306.Google Scholar
  8. [8]
    Leites, D.A.-Introduction to the theory of supermanifolds, Uspekhi Mat. Nauk., 35, 1980 (Russian Math. Surveus, 35, о 1, 1980, 1–64).Google Scholar
  9. [9]
    Muñoz Masqué, J.-Formes de structure et transformations infinitésimales de contact d'ordre supérieur. C.R. Acad. Sc. Paris, t. 298, Série I, о 8, 1984.Google Scholar
  10. [10]
    Muñoz Masqué, J.-Some applications of graded variational calculus. IV Meeting in Math. Phys. Coimbra, 1984 (to appear in Travaux en cours).Google Scholar
  11. [11]
    Muñoz Masqué, J.-Poincaré-Cartan forms in higher order variational problems. Rev. Mat. Iberoamericana, Vol. 1, о 4, (1985), 85–126.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Daniel Hernández Ruipérez
    • 1
  • Jaime Muñoz Masqué
    • 1
  1. 1.Dpto. de Matemáticas.Universidad de SalamancaSalamancaSpain

Personalised recommendations