Supergauge theories in graded manifolds

  • Antonio López Almorox
II. Superfield Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1251)


Vector Bundle Equivalence Relation Gauge Field Principal Bundle Differentiable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Utiyama-"Invariant theoretical interpretation of interaction". Phys. Rev. 101 (1956), 1597–1607.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    T.W.B. Kibble-"Lorentz invariance and gravitational field". J. Math. Phys. 2 (1961), 212–221.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    F.W. Hehl-"Four lectures on Poincaré gauge field theory". In "Cohomology and Gravitation Spin, Torsion, Rotation and Supergravity". Proc. of the Erice School 1979. Plenum. New York (1980).Google Scholar
  4. [4]
    Y. Ne'eman-"Gravity, groups and gauges". In Contribution to the Einstein Centenary G.R.G. Volume 1, Plenum Press (1979/80), 309–327.Google Scholar
  5. [5]
    P.L. García-"Connections and 1-jet fiber bundle". Rend. Sem. Math. Univ. Padova 47 (1972), 227–242.zbMATHGoogle Scholar
  6. [6]
    P.L. García-"Gauge algebras, curvature and symplectic structure". J. Diff. Geometry 12 (1977), 209–227.MathSciNetzbMATHGoogle Scholar
  7. [7]
    A. Pérez-Rendón-"Principles of minimal interaction". Proc. of the Meeting "Geometry and Physics". Florence, 1982. Pitagora Editrice (1983), 185–216.Google Scholar
  8. [8]
    A. Pérez-Rendón-"Utiyama type theorems in the Poincaré gauge approach to gravity I". In Proc. "IV Meeting in Math. Phys." Coimbra, 1984, to appear in Travaux en Cours. Hermann.Google Scholar
  9. [9]
    A. Pérez-Rendón and J.J. Seisdedos-"Utiyama type theorems in the Poincaré gauge approach to gravity II, to appear in Travaux en Cours. Hermann.Google Scholar
  10. [10]
    D. Bleecker-"Gauge theories and variational principles". Addison-Wesley. Reading MA (1981).zbMATHGoogle Scholar
  11. [11]
    P. Fayet and S. Ferrara-"Supersymmetry". Physics Report 32, о 5 (1977), 249–334.MathSciNetCrossRefGoogle Scholar
  12. [12]
    P. van Nieuwenhuizen-"Supergravity". Physics Report 68 (1981), 189–398.CrossRefGoogle Scholar
  13. [13]
    B. Kostant-"Graded manifolds, graded Lie theory and prequantization". In Diff. Geom. Meths. in Math. Phys. Bonn 1975. Springer-Verlag. Lecture Notes, 570 (1977), 177–306.Google Scholar
  14. [14]
    N. Barchelor-"The structure of supermanifolds". Trans. Amer. Math. Soc. 253 (1979) 329–338.MathSciNetCrossRefGoogle Scholar
  15. [15]
    D.H. Ruipérez and J.M. Masqué-"Global variational calculus on graded manifolds I". J. Math. Pures et Appl. 63 (1984), 283–309.zbMATHGoogle Scholar
  16. [16]
    D.H. Ruipérez and J.M. Masqué-"Global variational calculus on graded manifolds II". J. Math. Pures et Appl. 64 (1985), 87-MathSciNetzbMATHGoogle Scholar
  17. [17]
    M. Sweedler-"Hopf Algebras". Benjamin, New York, 1969.zbMATHGoogle Scholar
  18. [18]
    R.G. Heyneman and M. Sweedler-"Affine Hopf Albebras I". Journal of Algebra 13 (1969), 192–241.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A.L. Almorox-"Graded Lie algebras and invariant derivations of a graded Lie group". In Proc. IV Meeting on Math. Phys. Coimbra 1984, to appear in Travaux en Cours. Hermann.Google Scholar
  20. [20]
    A.L. Almorox-"The bundle of graded frames". Rend. Sem. Math. Univ. Politecn. Torino, Vol. 43, 3 (1985), 405–426.MathSciNetzbMATHGoogle Scholar
  21. [21]
    P. Gabriel-"Construction de preschemas quotient". In Schemas en Groupes I (S.G.A. 3). Springer-Verlag Lecture Notes, 151 (1970), 250–286.Google Scholar
  22. [22]
    D. Leites-"Introduction to the theory of supermanifolds". Russ. Math. Surveys 35:1 (1980), 1–64.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    N. Bourbaki-"Variétés différentielles et analytiques". Fascicule de résultats. Paragraphes 1 à 7. Hermann (1971).Google Scholar
  24. [24]
    A.L. Almorox-"Quotient structure in graded manifolds", to be published.Google Scholar
  25. [25]
    L. Mangiarotti and M. Modugno-"Fibered spaces, jet spaces and connections for field theories". Proc. of the Meeting "Geometry and Physics", Florence 1982. Pitagora Editrice (1983), 135–165.Google Scholar
  26. [26]
    F. Mansouri-"Superumfied theories based on the geometry of local (super)-gauge invariance". Phys. Rev. D 16, о 8 (1977), 2456–2467.MathSciNetGoogle Scholar
  27. [27]
    J.M. Masqué-"Tesis. Universidad de Salamanca". (1983).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Antonio López Almorox
    • 1
  1. 1.Dpto. de MatemáticasUniversidad de SalamancaSalamancaSpain

Personalised recommendations