Advertisement

Mathematics for classical supergravities

  • Yvonne Choquet-Bruhat
II. Superfield Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1251)

Keywords

Vector Bundle Formal Series Local Chart Principal Fiber Bundle Einstein Cartan Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bao, Y. Choquet-Bruhat, J. Isenberg, P. Yasskin, J. Math. Phys. 26 (2), 329–333 (1985).MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Batchelor, The structure of supermanifolds, Trans. Amer. Maths. Soc. 253 (1979) 329–338. Two approaches to supermanifolds, Trans. amer. Maths. Soc. 258 (1980) 257–270.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    U. Bruzzo and R. Cianci, Lett. in Maths. Phys. 8, (1984) 279–288.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Y. Choquet-Bruhat and C. DeWitt-Morette, "Analysis Manifolds and Physics" North Holland 1982.Google Scholar
  5. 5.
    Y. Choquet-Bruhat, "Supermanifolds and Supergravities" in "Geometrodynamics Proceedings" A. Prastaro ed., World Scientific 1985.Google Scholar
  6. 6.
    Y. Choquet-Bruhat, "Supergravities" in "Gravitation, Geometry and Relativistic Physics", Springer Lecture Notes in Phys. 219, P. Tourrenc ed. 1984.Google Scholar
  7. 7.
    Y. Choquet-Bruhat, The Cauchy Problem in Classical Supergravity, Lett. in Math. Phys. 7, 459–467 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Y. Choquet-Bruhat, The Cauchy Problem in extended Supergravity, N=1, d=11. Comm. in Maths. Phys. 97, 541–552 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E. Cremmer, B. Julia, J. Scherk, Supergravity theory in 11 dimensions. Phys. Lett. 76B, 4 (1978) 409–411.CrossRefzbMATHGoogle Scholar
  10. 10.
    S. Deser and B. Zumino, Consistent Supergravity, Phys. Letters 62 no3 (1976) 335–337.MathSciNetCrossRefGoogle Scholar
  11. 11.
    B. DeWitt, Dynamical Theory of Groups and Fields. Gordon and Breach 1965.Google Scholar
  12. 12.
    B. DeWitt, Supermanifolds. Cambridge University Press 1984.Google Scholar
  13. 13.
    D.Z. Freedman, P. Van Nieuwenhuisen and S. Ferrara. Progress towards a theory of Supergravity, Phys. Rev. D, 13 no12 (1976) 3214–3218.MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Green and J. Schwartz, Phys. Let. 136 B (1984) 367.CrossRefGoogle Scholar
  15. 15.
    A. Jadczyk and K. Pilch, Comm. Math. Phys. 78, 373–390 (1981).MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Kerner, Ann. Inst. Poincaré 9 (1968) 143.MathSciNetGoogle Scholar
  17. 17.
    B. Kostant, Graded Manifolds in "Differential geometric methods in Mathematical Physics" Springer Lecture Notes, 570, 177–306 (1977).MathSciNetGoogle Scholar
  18. 18.
    A. Perez-Rendon and D.H. Ruiperez, "Towards a classical field theory on graded manifolds" Journées Relativistes 1983, S. Benenti, M. Ferraris, M. Francaviglia ed. Pitagora 1985.Google Scholar
  19. 19.
    A. Rogers, A global theory of supermanifolds, J. Maths. Phys. 21 (6) (1980) 1352–1365.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    D.H. Ruiperez and J. Munoz-Masqué, Global variational calculus on graded manifolds, J. Maths. pures et appliquées, 64, 1 (1985) 87–101.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Yvonne Choquet-Bruhat
    • 1
  1. 1.Institut de MécaniqueUniversité Paris VIFrance

Personalised recommendations