Skip to main content

A comparison of the local behavior of spline L2-projections, fourier series and legendre series

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1121))

Abstract

Mechanisms are given which explain, in a quantitative fashion, "pollution" from nonsmooth regions of a function approximated into smooth regions. In spline L2-projection pollution is negligible. In Fourier series it is governed by a global modulus of continuity in L1 and in Legendre series by a weighted L1 global modulus of continuity which accounts for certain boundary effects.

The three cases considered may serve as models for similar effects in approximation of derivatives in the "h-finite element", the "spectral" and the "p-finite element" methods of solving elliptic partial differential equations. However, the case of the "h-method", which is at present reasonably understood also in two space dimensions, shows that the analogy is far from perfect. One notes, though, that in some more complicated situations with the "h-method" the "pollution" effects are never better than in the simple model considered here. Thus, our rather pessimistic results concerning Fourier series and Legendre series may be of some value in delineating the performances of the "spectral" and "p-finite element" methods.

Examples are given that demonstrate sharpness of the "pollution" mechanisms described. Also, examples of de la Vallée-Poussin type summation methods which reduce "pollution" are considered.

This work was supported by the National Science Foundation, USA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Agahanov and G.I. Natanson; The Lebesgue function in Fourier-Jacobi sums, Vestnik Leningrad University, Mathematics, 1968, No. 1, 11–23.

    Google Scholar 

  2. I. Babuska; Lecture at the Finite Element Circus, in Knoxville, Tennessee, October 1983.

    Google Scholar 

  3. I. Babuska, B.A. Szabo and I.N. Katz; The p-version of the finite element method, SIAM J. Numer. Anal. 18, 1981, 515–545.

    Article  MathSciNet  MATH  Google Scholar 

  4. N.K. Bary; A Treatise on Trigonometric Series, Volume 2, Macmillan, New York, 1964.

    MATH  Google Scholar 

  5. J. Descloux; On finite element matrices, SIAM J. Numer. Anal. 9, 1972, 260–265.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Douglas Jr., T. Dupont and L.B. Wahlbin; Optimal L error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29, 1975, 475–483.

    MathSciNet  MATH  Google Scholar 

  7. L. Fejér; Über die Laplacesche Reihe, Math. Annal. 67, 1909, 76–109.

    Article  MATH  Google Scholar 

  8. D. Gottlieb and S.A. Orszag; Numerical Analysis of Spectral Methods: Theory and Applications, SIAM Regional Conference Series in Applied Mathematics, no. 26, SIAM, Philadelphia, Pennsylvania, 1980.

    MATH  Google Scholar 

  9. T.H. Gronwall; Über die Laplacesche Reihe, Math. Annal. 74, 1913, 213–270.

    Article  MathSciNet  MATH  Google Scholar 

  10. G.G. Lorentz; Approximation of Functions, Holt, Rinehart and Winston, New York, New York, 1966.

    MATH  Google Scholar 

  11. J.J. Moreau; Approximation en graphe d'une évolution discontinue, RAIRO, Analyse Numerique 12, 1978, 75–84.

    MathSciNet  MATH  Google Scholar 

  12. S.M. Nikol'skii; On the best approximation of functions satisfying a Lipschitz's condition by polynomials, Izvestia Akad. Nauk. SSSR, Ser. Mat. 10, 1946, 295–322.

    Google Scholar 

  13. J. Nitsche and A.H. Schatz; On local approximation properties of L2 projection on spline subspaces, Applicable Anal. 2, 1972, 161–168.

    Article  MathSciNet  MATH  Google Scholar 

  14. M.E. Noble; Coefficient properties of Fourier series with a gap condition, Math. Annal. 128, 1954, 55–62 (Correction: 256).

    Article  MathSciNet  MATH  Google Scholar 

  15. M.J.D. Powell; Approximation Theory and Methods, Cambridge University Press, Cambridge, 1981.

    MATH  Google Scholar 

  16. B. Riemann; Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe (1854), Collected Works, 2nd Ed., Leipzig, 1892, 227–271.

    Google Scholar 

  17. A.H. Schatz and L.B. Wahlbin; Interior maximum norm estimates for finite element methods, Math. Comp. 31, 1977, 414–442.

    Article  MathSciNet  MATH  Google Scholar 

  18. A.H. Schatz and L.B. Wahlbin; On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40, 1983, 47–89.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Sendov; Some questions of the theory of approximations of functions and sets in the Hausdorff metric, Russian Math. Surveys 24, 1969, 143–183.

    Article  MathSciNet  MATH  Google Scholar 

  20. P.K. Suetin; Classical Orthonormal Expansions, Nauka, Moscow, 1979.

    Google Scholar 

  21. G. Szegö; Orthogonal Polynomials, 4th Ed., AMS, Providence, Rhode Island, 1975.

    MATH  Google Scholar 

  22. A.F. Timan; A strengthening of Jackson's theorem on the best approximation of continuous functions by polynomials on a finite interval of the real axis, Doklady Akad. Nauk. SSSR, 78, 1951, 17–20.

    MathSciNet  Google Scholar 

  23. L.B. Wahlbin; On the sharpness of certain local estimates for \(\mathop {{H^1}}\limits^o\) projections into finite element spaces: Influence of a reentrant corner, Math. Comp. January 1984, to appear.

    Google Scholar 

  24. A. Zygmund; Trigonometric Series, 2nd Ed., (Reprinted), Cambridge University Press, Cambridge, 1968.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Grisvard Wolfgang L. Wendland John R. Whiteman

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Wahlbin, L.B. (1985). A comparison of the local behavior of spline L2-projections, fourier series and legendre series. In: Grisvard, P., Wendland, W.L., Whiteman, J.R. (eds) Singularities and Constructive Methods for Their Treatment. Lecture Notes in Mathematics, vol 1121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0076279

Download citation

  • DOI: https://doi.org/10.1007/BFb0076279

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15219-4

  • Online ISBN: 978-3-540-39377-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics