Advertisement

Measure, Π10-classes and complete extensions of PA

  • Antonín Kučera
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1141)

Keywords

Initial Segment Measure Zero Total Tree Recursive Function True Answer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arslanov, M.M., Nadirov, R.F., Solovev, V.D. (1977) Completeness criteria for recursively enumerable sets and some general theorems on fixed points, Mathematical University News 179, 3–7.Google Scholar
  2. Demuth, O. (1982) On some classes of arithmetical real numbers, Comment. Math. Univ. Carolinae 23, 453–465. (Russian)MathSciNetzbMATHGoogle Scholar
  3. Demuth, O., Kučera, A. (1979) Remarks on constructive mathematical analysis, Logic Colloquium '78 (Boffa, van Dalen, McAloon ed.), North-Holland, Amsterdam, 81–129.Google Scholar
  4. Jockusch, C.G.Jr. (1980) Degrees of generic sets, in Recursion theory: its generalizations and applications, (Drake, Wainer ed.) Cambridge Univ. Press, 110–139.Google Scholar
  5. Jockusch, C.G.Jr., Posner, D. (1978) Double jumps of minimal degrees, J. Symbolic Logic 43, 715–724.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Jockusch, C.G.Jr., Soare, R.I. (1972a) Degrees of members of Π10 classes Pacific J. Math. 40, 605–616.MathSciNetzbMATHGoogle Scholar
  7. Jockusch, C.G.Jr., Soare, R.I. (1972b) Π10 classes and degrees of theories, Trans. Amer. Math. Soc. 173, 33–56.MathSciNetzbMATHGoogle Scholar
  8. Lerman, M. (1983) Degrees of unsolvability, Local and global theory, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.CrossRefzbMATHGoogle Scholar
  9. Martin-Löf, P. (1970) Notes on constructive mathematics, Almqvist and Wiksell, Stockholm.Google Scholar
  10. Posner, D. (1977) High degrees, Doctoral dissertation, University of California, Berkeley.Google Scholar
  11. Posner, D., Robinson, R.W. (1981) Degrees joining to O′, J. Symbolic Logic 46, 714–722.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Rogers, H.Jr. (1967) Theory of recursive functions and effective computability, McGraw-Hill, New York.zbMATHGoogle Scholar
  13. Sacks, G.E. (1963) Degrees of unsolvability, Annals of Math. Studies 55, Princeton University Press, Princeton, N.J.zbMATHGoogle Scholar
  14. Simpson, S.G. (1977) Degrees of unsolvability: A survey of results, Handbook of Mathematical Logic (J. Barwise ed.), North-Holland, Amsterdam, 631–652.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Antonín Kučera
    • 1
  1. 1.Department of Computer ScienceCharles UniversityPrague 1Czechoslovakia

Personalised recommendations