Advertisement

Sets of everywhere singular functions

  • Alexander S. Kechris
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1141)

Keywords

Fourier Series Initial Segment Polish Space Separable Banach Space Baire Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba]
    N.K. Bari, A treatise on trigonometric series, vols. I and II, Macmillan Co., New York, 1964.Google Scholar
  2. [Be]
    A.S. Besicovitch, Discussion der stetigen Functionen im Zusammenhang mit der Prage über ihre Differenzierbarkeit, Bull. Acad. Sci. URSS 19(1925), 527–540.Google Scholar
  3. [H]
    E.W. Hobson, The theory of functions of a real variable, vol. 2, Second Edition, Dover Publ., New York, 1957.Google Scholar
  4. [K]
    Y. Katznelson, An introduction to harmonic analysis, Dover Publ., New York, 1976.zbMATHGoogle Scholar
  5. [Mal]
    J. Malý, Where the continuous functions without unilateral derivatives are typical, Trans. Amer. Math. Soc., 283(1984), 169–175.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Mau]
    R.D. Mauldin, The set of continuous nowhere differentiable functions, Pac. J. Math., 83(1979), 199–205.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [R]
    C.A. Rogers and al., Analytic sets, Academic Press, London, 1980.Google Scholar
  8. [Sa]
    S. Saks, On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19(1932), 211–219.zbMATHGoogle Scholar
  9. [St]
    K.R. Stromberg, An introduction to classical real analysis, Wadsworth Intern. Group, Belmont, CA, 1981.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Alexander S. Kechris
    • 1
  1. 1.Department of MathematicsCalifornia Institute of TechnologyPasadena

Personalised recommendations