Advertisement

Embeddings and extensions of embeddings in the r.e. tt and wtt-degrees

  • Peter A. Fejer
  • Richard A. Shore
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1141)

Keywords

Distributive Lattice Decision Procedure Truth Table Recursive Function Great Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambos-Spies, K., On the structure of the recursively enumerable degrees, Dissertation, University of Munich, 1980.Google Scholar
  2. Harrington, L. and Shelah, S., The undecidability of the recursively enumerable degrees (research announcement), Bull. A.M.S., 6 (1982), 79–80.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Jockush, C.G. and Mohrherr, J., Embedding the diamond lattice in the r.e. tt-degrees, to appear.Google Scholar
  4. Lachlan, A.H., Initial segments of one-one degrees, Pacific J. Math. 29 (1969), 351–366.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Lachlan, A.H., Initial segments on many-one degrees, Canad. J. Math., 22 (1970), 75–85.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Lachlan, A.H., Embedding nondistributive lattices in the recursively enumerable degrees, Lecture Notes in Mathematics, No. 255, (Conference in Mathematical Logic, London, 1970), Springer-Verlag, New York, 1972, 149–177.zbMATHGoogle Scholar
  7. Lachlan, A.H., and Soare, R.I., Not every finite lattice is embeddable in the recursively enumerable degrees, Advances in Math., 37 (1980), 74–82.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Lerman, M., Degrees of unsolvability: local and global theory, Springer-Verlag, New York, 1983.CrossRefzbMATHGoogle Scholar
  9. Odifreddi, P., Strong reducibilities, Bull. A.M.S. (New Series), 4 (1981), 37–86.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Pudlak, P., and Tuma, J., Every finite lattice can be embedded in a finite partition lattice, Algebra Universalis, 10 (1980), 74–95.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Rogers, H., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.zbMATHGoogle Scholar
  12. Shore, R.A., Finitely generated codings and the degrees r.e. in a degree d, Proc. A.M.S., 84 (1982), 256–263.MathSciNetzbMATHGoogle Scholar
  13. Soare, R.I., Recursively enumerable sets and degrees, Bull. A.M.S., 84 (1978), 1149–1181.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Soare, R.I., Fundamental methods for constructing recursively enumerable degrees, Lecture Notes of London Math. Soc., No. 45, (Recursion Theory: Its Generalizations and Applications, Proceedings of the Logic Colloquium '79, Leeds, August, 1979, F.R. Drake and S.S. Wainer, eds), Cambridge Univ. Press, Cambridge, 1980.Google Scholar
  15. Stob., M., wtt-degrees and T-degrees of recursively enumerable sets, Journal of Sym. Logic, 48 (1983), 921–930.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Thomason, S.K., Sublattices of the recursively enumerable degrees, Z. Math. Logik Grundlagen Math., 17 (1971), 273–280.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Peter A. Fejer
    • 1
  • Richard A. Shore
    • 2
  1. 1.University of Massachusetts-RostonBoston
  2. 2.Cornell UniversityIthaca

Personalised recommendations