Advertisement

Recursion theory on strongly Σ2 inadmissible ordinals

  • C. T. Chong
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1141)

Keywords

Order Theory Order Type Recursion Theory Splitting Operation Major Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. T. Chong [1979], Major subsets of α-recursively enumerable sets, Israel J. Math. 34, 106–114MathSciNetCrossRefzbMATHGoogle Scholar
  2. C. T. Chong [1983], Global and local admissibility: II. Major subsets and automorphisms, Annals Pure and Applied Logic 24, 99–111MathSciNetCrossRefzbMATHGoogle Scholar
  3. C. T. Chong [to appear], Techniques of Admissible Recursion Theory Google Scholar
  4. C. T. Chong and S. D. Friedman [1983], Degree theory on ℵω, Annals Pure and Applied Logic 24, 87–97MathSciNetCrossRefzbMATHGoogle Scholar
  5. C. T. Chong and M. Lerman [1976], Hyperhypersimple α-r.e. sets, Annals Math. Logic 9, 1–48MathSciNetCrossRefGoogle Scholar
  6. S. D. Friedman [1981], Natural α-r.e. degrees, in: Logic Year 1979–1980, Lecture Notes in Math. Vol.859Google Scholar
  7. S. D. Friedman [1981a], Nagative solutions to Post's problem II, Annals Math., 113, 25–43CrossRefzbMATHGoogle Scholar
  8. S. D. Friedman [1983], Some recent developments in higher recursion theory, J. Symbolic Logic 48, 629–642MathSciNetCrossRefzbMATHGoogle Scholar
  9. A. H. Lachlan [1975], A recursively enumerable degree which will not split over all lesser ones, Annals Math. Logic 9, 307–365MathSciNetCrossRefzbMATHGoogle Scholar
  10. R. B. Jensen [1972], The fine structure of the constructible universe, Annals Math. Logic 4, 229–308CrossRefzbMATHGoogle Scholar
  11. A. Leggett and R. A. Shore [1976], Types of simple α-recursively enumerable sets, J. Symbolic Logic 41, 681–694MathSciNetzbMATHGoogle Scholar
  12. M. Lerman [1976], Types of simple α-recursively enumerable sets, J. Symbolic Logic 41, 419–426MathSciNetzbMATHGoogle Scholar
  13. W. A. Maass [1978], High α-recursively enumerable degrees, in: Generalized Recursion Theory II, North Holland, 239–270Google Scholar
  14. R. W. Robinson [1971], Interpolation and embedding in the recursively enumerable degrees, Annals Math. 93, 285–314MathSciNetCrossRefzbMATHGoogle Scholar
  15. R. A. Shore [1976], On the jump of an α-recursively enumerable set, Trans. Amer. Math. Soc. 217, 351–363MathSciNetzbMATHGoogle Scholar
  16. R. A. Shore [1976a], The recursively enumerable α-degrees are dense, Annals Math. Logic 9, 123–155MathSciNetCrossRefzbMATHGoogle Scholar
  17. R. A. Shore [1978], On the AE-sentences of α-recursion theory, in: Generalized Recursion Theory II, North Holland, 331–354Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • C. T. Chong
    • 1
  1. 1.Department of MathematicsNational University of SingaporeSingapore

Personalised recommendations