Advertisement

Kleene degrees of ultrafilters

  • Andreas Blass
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1141)

Keywords

Isomorphism Class Initial Segment Order Type Error Message Continuum Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Blass, Orderings of ultrafilters, Thesis, Harvard University, 1970.Google Scholar
  2. 2.
    _____, The Rudin-Keisler ordering of P-points, Trans. Amer. Math. Soc. 179 (1973) 145–166.MathSciNetzbMATHGoogle Scholar
  3. 3.
    _____, End extensions, conservative extensions, and the Rudin-Frolik ordering, Trans. Amer. Math. Soc. 225 (1977) 325–340.MathSciNetzbMATHGoogle Scholar
  4. 4.
    _____, A model-theoretic view of some special ultrafilters, in Logic Colloquium '77 (Proc. Wrocław) ed. A. Macintyre, L. Pacholski, J. Paris, North-Holland, 1978, 79–90.Google Scholar
  5. 5.
    _____, Selective ultrafilters and homogeneity, in preparation.Google Scholar
  6. 6.
    D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970) 1–24.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    G. Choquet, Construction d'ultrafiltres sur N, Bull. Sci. Math. (2) 103 (1968) 41–48.MathSciNetzbMATHGoogle Scholar
  8. 8.
    _____, Deux classes remarquables d'ultrafiltres sur N, Bull. Sci. Math. (2) 103 (1958) 143–153.MathSciNetzbMATHGoogle Scholar
  9. 9.
    W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer-Verlag, 1974.Google Scholar
  10. 10.
    L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.Google Scholar
  11. 11.
    P. G. Hinman, Recursion-Theoretic Hierarchies, Springer-Verlag, 1978.Google Scholar
  12. 12.
    K. Kunen, Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972) 299–306.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    _____, Some points in βN, Math. Proc. Cambridge Phil. Soc. 80 (1976) 385–398.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    _____, Weak P-points in N*, in Topology, vol. II (Proc. 4th Colloq., Budapest) ed. A. Császár, Colloq. Math. Soc. János Bolyai 23, North-Holland (1980) 741–750.Google Scholar
  15. 15.
    A. Louveau, Ultrafiltres sur N et derivation sequentelle, Bull. Sci. Math. 107 (1972) 353–382.MathSciNetzbMATHGoogle Scholar
  16. 16.
    A.R.D. Mathias, Happy families, Ann. Math. Logic 12 (1977) 59–111.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    __________, O# and the p-point problem, in Higher Set Theory (Proc. Oberwolfach, 1977) ed. G. H. Műller and D.S. Scott, Springer Lecture Notes in Mathematics 669, 1978, 375–384.Google Scholar
  18. 18.
    A. Miller, There are no Q-points in Laver's model for the Borel Conjecture, Proc. Amer. Math. Soc. 78 (1980) 103–106.MathSciNetzbMATHGoogle Scholar
  19. 19.
    R.A. Pitt, The classification of ultrafilters on N, Thesis, University of Leicester, 1971.Google Scholar
  20. 20.
    F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929) 264–286.MathSciNetzbMATHGoogle Scholar
  21. 21.
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.Google Scholar
  22. 22.
    N. Rosen, Weakly Ramsey P points, Trans. Amer. Math. Soc. 269 (1982) 415–428.MathSciNetzbMATHGoogle Scholar
  23. 23.
    M.E. Rudin, Partial orders on the types of βN, Trans. Amer. Math. 155 (1971) 353–362.MathSciNetzbMATHGoogle Scholar
  24. 24.
    J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970) 60–64.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    R.C. Solomon, private communication, April, 1972.Google Scholar
  26. 26.
    _____, A type of βN with N 0 relative types, Fund. Math. 79 (1973) 209–212.MathSciNetGoogle Scholar
  27. 27.
    A. K. Steiner and E.F. Steiner, Relative types of points of βN/N, Trans. Amer. Math. Soc. 160 (1971) 279–286.MathSciNetzbMATHGoogle Scholar
  28. 28.
    E. Wimmers, The Shelah P-point independence theorem, Israel J. Math. 43 (1982) 28–48.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Andreas Blass
    • 1
  1. 1.Mathematics DepartmentUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations