Generators of the recursively enumerable degrees

  • Klaus Ambos-Spies
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1141)


Inductive Hypothesis Finite Collection Minimal Pair Splitting Theorem Infinite Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ambos-Spies, On the structure of the recursively enumerable degrees, Dissertation, Universität München, 1980.Google Scholar
  2. 2.
    K. Ambos-Spies, On pairs of recursively enumerable degrees, Trans. Amer. Math. Soc. 283 (1984) 507–531.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    K. Ambos-Spies, Contiguous r.e. degrees, in Proceedings of Logic Colloquium 83, Springer Lecture Notes in Mathematics, 1104 (1984) 1–37.Google Scholar
  4. 4.
    K. Ambos-Spies and M. Lerman, Lattice embeddings into the recursively enumerable degrees, to appear.Google Scholar
  5. 5.
    P.A. Fejer, The density of the nonbranching degrees, Ann. Math. Logic 24 (1983) 113–130.MathSciNetzbMATHGoogle Scholar
  6. 6.
    C.G. Jockusch, Jr. and D. Posner, Automorphism bases for degrees of unsolvability, Israel J. Math., to appear.Google Scholar
  7. 7.
    A.H. Lachlan, Lower bounds for pairs of recursively enumerable degrees, Proc. London Math. Soc. 16 (1966) 537–569.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A.H. Lachlan, Bounding minimal pairs, J. Symbolic Logic 44 (1979) 626–642.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R.E. Ladner and L.P. Sasso, The weak truth table degrees of recursively enumerable sets, Ann. Math. Logic 4 (1975) 429–448.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Lerman, Admissible ordinals and priority arguments,in Proc. Cambridge Summer School in Logic 1971, Lecture Notes in Mathematics, No. 337 (1973), Springer Verlag.Google Scholar
  11. 11.
    R.W. Robinson, Interpolation and embedding in the recursively enumerable degrees, Ann. of Math. 93 (1971) 285–314.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    G.E. Sacks, Degrees of unsolvability, Ann. of Math. Studies 55, rev. ed. 1966, Princeton University Press.Google Scholar
  13. 13.
    G.E. Sacks, The recursively enumerable degrees are dense, Ann. of Math. 77 (1964) 223–239.MathSciNetzbMATHGoogle Scholar
  14. 14.
    R.I. Soare, Fundamental methods for constructing recursively enumerable degrees, in Recursion Theory: Its Generalisations and Applications, F.R. Drake and S.S. Wainer, Eds., Cambridge University Press, Lecture Notes 45 (1980), 1–51.Google Scholar
  15. 15.
    M. Stob, wtt-degrees and T-degrees of recursively enumerable sets, J. Symbolic Logic 48 (1983) 921–930.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    C.E.M. Yates, A minimal pair of recursively enumerable degrees, J. Symbolic Logic 31 (1966) 159–168.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    K. Ambos-Spies and R.I. Soare, The recursively enumerable degrees have infinitely many one types, to appear.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Klaus Ambos-Spies
    • 1
  1. 1.Universität DortmundGermany

Personalised recommendations