Advertisement

Equadiff 6 pp 339-344 | Cite as

Error estimates for finite element methods for semilinear parabolic problems with nonsmooth data

  • V. Thomée
Lectures Presented In Sections Section C Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Keywords

Linear Homogeneous Equation Data Error Estimate Yield Error Bound Nonsmooth Data Error Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Baker, J.H. Bramble and V. Thomée, Single step Galerkin approximations for parabolic problems. Math. Comp. 31 (1977), 818–847.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Blair, Approximate solution of elliptic and parabolic boundary value problems, Thesis, Univ. of California, Berkeley, 1970.Google Scholar
  3. 3.
    J.H. Bramble, A.H. Schatz, V. Thomée and L.B. Wahlbin, Some convergence estimates for semilinear Galerkin type approximations for parabolic equations. SIAM J. Numer. Anal. 14 (1977), 218–241.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Crouzeix and V. Thomée, On the discretization in time of semilinear parabolic equations with non-smooth initial data. To appear.Google Scholar
  5. 5.
    H.P. Helfrich, Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen. Manuscr. Math. 13 (1974), 219–235.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. Johnson, S. Larsson, V. Thomée and L.B. Wahlbin, Error estimates for semidiscrete approximations of semilinear parabolic equations with non-smooth data. To appear.Google Scholar
  7. 7.
    V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics no. 1054, Springer-Verlag, 1984.Google Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • V. Thomée
    • 1
  1. 1.Department of MathematicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations