Advertisement

Equadiff 6 pp 321-325 | Cite as

Mixed finite element in 3D in H(div) and H(curl)

  • J. C. Nedelec
Lectures Presented In Sections Section C Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. F. BREZZI, On the existence, uniqueness and approximation of saddle point problems ausing from Lagrangian multipliers. RAIRO 8: 129–151 (1974).MathSciNetzbMATHGoogle Scholar
  2. F. BREZZI, J. DOUGLASS & L.D. MARINI, Two families of mixed finite elements for second order elliptic problems. To appear in Numerische Mathematik.Google Scholar
  3. P.G. CIARLET, The finite element method for elliptic problems. North Holland Amsterdam (1978).zbMATHGoogle Scholar
  4. P.G. CIARLET & P.A. RAVIART, A mixed finite element method for the biharmonic equation. Mathematical aspects in finite element method (C de Boor ed.) pp. 125–145 Academic Press New York (1974).Google Scholar
  5. M. FORTIN, An analysis of the convergence of mixed finite element method. RAIRO 11: 341–354 (1977).MathSciNetzbMATHGoogle Scholar
  6. J.C. NEDELEC, Mixed finite element in ℝ3. Numerische Mathematik 35: 315–341 (1980).MathSciNetCrossRefGoogle Scholar
  7. J.C. NEDELEC, Elements finis mixtes incompressibles pour l'equation de Stokes dans ℝ3. Numerische Mathematik 39, 97–112 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  8. P.A. RAVIART & J.M. THOMAS, A mixed finite element method for 2nd order elliptic problems. In Dold A Eckmann B (eds), Mathematical aspects of finite element methods. Lecture Notes 606 Springer Berlin (1977).CrossRefGoogle Scholar
  9. J.M. THOMAS, Thesis Paris (1977).Google Scholar
  10. J.C. NEDELEC, A new family of mixed finite element in ℝ3 (à paraître).Google Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • J. C. Nedelec
    • 1
  1. 1.Ecole PolytechniqueCentre de Mathématiques AppliquéesPalaiseauFrance

Personalised recommendations