Advertisement

Equadiff 6 pp 315-320 | Cite as

Superconvergence results for linear triangular elements

  • M. Křížek
Lectures Presented In Sections Section C Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Keywords

Finite Element Method Linear Element Finite Element Scheme Superconvergence Result Linear Triangular Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ANDREEV, A. B.: Superconvergence of the gradient for linear triangle elements for elliptic and parabolic equations. C. R. Acad. Bulgare Sci. 37 (1984), 293–296.MathSciNetzbMATHGoogle Scholar
  2. [2]
    ANDREEV, A. B., EL HATRI, M. and LAZAROV, R. D.: Superconvergence of the gradient in the finite element method for some elliptic and parabolic problems (Russian). Variational-Difference Methods in Math. Phys., Part 2 (Proc. Conf., Moscow, 1983), Viniti, Moscow, 1984, 13–25.Google Scholar
  3. [3]
    BABUŠKA, I. and MILLER, A.: The post-processing in the finite element method, Part I Internat. J. Numer. Methods Engrg. 20 (1984), 1085–1109.CrossRefzbMATHGoogle Scholar
  4. [4]
    CHEN, C. M.: Optimal points of the stresses for triangular linear element (Chinese). Numer. Math. J. Chinese Univ. 2 (1980), 12–20.MathSciNetzbMATHGoogle Scholar
  5. [5]
    CHEN, C. M.: Optimal points of the stresses for tetrahedron linear element (Chinese). Natur. Sci. J. Xiangtan Univ. 3 (1980), 16–24.Google Scholar
  6. [6]
    CHEN, C. M.: Finite Element Method and Its Analysis in Improving Accuracy (Chinese). Hunan Sci. and Tech. Press, Changsha, 1982.Google Scholar
  7. [7]
    CHEN, C. M.: Superconvergence of finite element approximations to nonlinear elliptic problems. (Proc. China-France Sympos. on Finite Element Methods, Beijing, 1982), Science Press, Beijing, Gordon and Breach Sci. Publishers, Inc., New York, 1983, 622–640.Google Scholar
  8. [8]
    CHEN, C. M.: An estimate for elliptic boundary value problem and its applications to finite element method (Chinese). Numer. Math. J. Chinese Univ. 5 (1983), 215–223.MathSciNetzbMATHGoogle Scholar
  9. [9]
    CHEN, C. M.: W1,∞-interior estimates for finite element method on regular mesh. J. Comp. Math. 3 (1985), 1–7.Google Scholar
  10. [10]
    CHEN, C. M.: Superconvergence of finite element methods (Chinese). Advances in Math. 14 (1985), 39–51.MathSciNetzbMATHGoogle Scholar
  11. [11]
    CHEN, C. M. and LIU, J.: Superconvergence of the gradient of triangular linear element in general domain. Preprint Xiangtan Univ., 1985, 1–19.Google Scholar
  12. [12]
    CHEN, C. M. and THOMEE, V.: The lumped mass finite element method for a parabolic problem. J. Austral. Math. Soc. Ser. B 26 (1985), 329–354.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    CHENG, S. J.: Superconvergence of finite element approximation for Navier-Stokes equation. (Proc. Conf., Bonn, 1983), Math. Schrift. No. 158, Bonn, 1984, 31–45.Google Scholar
  14. [14]
    DOUGLAS, J., DUPONT, T. and WHEELER, M. F.: A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary value problems. RAIRO Anal. Numér. 8 (1974), 47–59.MathSciNetzbMATHGoogle Scholar
  15. [15]
    FRIED, I.: On the optimality of the pointwise accuracy of the finite element solution. Internat. J. Numer. Methods Engrg. 15 (1980), 451–456.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    GLOWINSKI, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Comp. Physics. Springer-Verlag, Berlin, New York, 1984.Google Scholar
  17. [17]
    EL HATRI, M.: Superconvergence of axisymmetrical boundary-value problem. C. R. Acad. Bulgare Sci. 36 (1983), 1499–1502.MathSciNetzbMATHGoogle Scholar
  18. [18]
    EL HATRI, M.: Superconvergence in finite element method for a degenerated boundary value problem (to appear), 1984, 1–6.Google Scholar
  19. [19]
    HINTON, E. and CAMPBELL, J. S.: Local and global smoothing of discontinuous finite element functions using a least squares method. Internat. J. Numer. Methods Engrg. 8 (1974), 461–480.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    HLAVÁČEK, I. and KŘÍŽEK, M.: On a superconvergent finite element scheme for elliptic systems, I. Dirichlet boundary conditions, II. Boundary conditions of Newton's or Neumann's type (submitted to Apl. Mat.), 1985, 1–29, 1–17.Google Scholar
  21. [21]
    KŘÍŽEK, M. and NEITTAANMÄKI, P.: Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45 (1984), 105–116.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    KŘÍŽEK, M. and NEITTAANMÄKI, P.: On superconvergence techniques. Preprint No. 34, Univ. of Jyväskylä, 1984, 1–43.Google Scholar
  23. [23]
    KŘÍŽEK, M. and NEITTAANMÄKI, P.: On a global superconvergence of the gradient of linear triangular elements. Preprint No. 85/4, Univ. Hamburg, 1985, 1–20.Google Scholar
  24. [24]
    LASAINT, P. and ZLÁMAL, M.: Superconvergence of the gradient of finite element solutions. RAIRO Anal. Numér. 13 (1979), 139–166.MathSciNetzbMATHGoogle Scholar
  25. [25]
    LEVINE, N.: Stress ampling points for linear triangles in the finite element method. Numer. Anal. Report 10/82, Univ. of Reading, 1982.Google Scholar
  26. [26]
    LEVINE, N.: Superconvergent recovery of the gradient from piecewise linear finite element approximations. Numer. Anal. Report 6/83, Univ. of Reading, 1983, 1–25.Google Scholar
  27. [27]
    LIN, Q.: High accuracy from the linear elements. Proc. of the Fifth Beijing Sympos. on Differential Geometry and Differential Equations, Beijing, 1984, 1–5.Google Scholar
  28. [28]
    LIN, Q. and LÜ, T.: Asymptotic expansions for finite element approximation of elliptic problem on polygonal domains. Comp. Methods in Appl. Sci. and Engrg. (Proc. Conf., Versailles, 1983), North-Holland Publishing Company, INRIA, 1984, 317–321.Google Scholar
  29. [29]
    LIN, Q. and LÜ, T.: Asymptotic expansions for finite element eigen-values and finite element solution. (Proc. Conf., Bonn, 1983), Math. Schrift. No. 158, Bonn, 1984, 1–10.Google Scholar
  30. [30]
    LIN, Q., LÜ, T. and SHEN, S.: Asymptotic expansion for finite element approximations. Research Report IMS-11, Chengdu Branch of Acad. Sinica, 1983, 1–6.Google Scholar
  31. [31]
    LIN, Q., LÜ, T. and SHEN, S.: Maximum norm estimate, extrapolation and optimal point of stresses for the finite element methods on the strongly regular triangulations. J. Comput. Math. 1 (1983), 376–383.zbMATHGoogle Scholar
  32. [32]
    LIN, Q. and WANG, J.: Some expansions of the finite element approximation. Research Report IMS-15, Chengdu Branch of Acad. Sinica, 1984, 1–11.Google Scholar
  33. [33]
    LIN, Q. and XU, J. Ch.: Linear elements with high accuracy. J. Comp. Math. 3 (1985), 115–133.MathSciNetzbMATHGoogle Scholar
  34. [34]
    LIN, Q. and ZHU, Q. D.: Asymptotic expansion for the derivative of finite elements. J. Comp. Math. 2 (1984), 361–363.MathSciNetzbMATHGoogle Scholar
  35. [35]
    MICHLIN, S. G. and SMOLICKIJ, Ch. L.: Approximation Methods for Solving Differential and Integral Equations (Russian). Nauka, Moscow, 1965.Google Scholar
  36. [36]
    NEITTAANMÄKI, P. and KŘÍŽEK, M.: Superconvergence of the finite element schemes arising from the use of averaged gradients. Accuracy Estimates and Adaptive Refinements in Finite Element Computations, (Proc. Conf., Lisbon, 1984), Lisbon, 1984, 169–178.Google Scholar
  37. [37]
    OGANESJAN, L. A., RIVKIND, V. J. and RUCHOVEC, L. A.: Variational-Difference Methods for the Solution of Elliptic equations (Russian). Part I (Proc. Sem., Issue 5, Vilnius, 1973), Inst. of Phys. and Math., Vilnius, 1973, 3–389.Google Scholar
  38. [38]
    OGANESJAN, L. A. and RUCHOVEC, L. A.: Variational-Difference Methods for the Solution of Elliptic Equations (Russian). Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979.Google Scholar
  39. [39]
    RANNACHER, R. and SCOTT, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982), 437–445.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    ZHU, Q. D.: Natural inner superconvergence for the finite element method. (Proc. China-France Sympos. on Finite Element Methods, Beijing, 1982), Science Press, Beijing, Gordon and Breach Sci. Publishers, Inc., New York, 1983, 935–960.Google Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • M. Křížek
    • 1
  1. 1.Mathematical InstituteCzechoslovak Academy of SciencesPrague 1Czech Republic

Personalised recommendations