Advertisement

Equadiff 6 pp 309-314 | Cite as

Bifurcation analysis of stimulated brillouin scattering

  • V. Janovský
  • I. Marek
  • J. Neuberg
Lectures Presented In Sections Section C Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Keywords

Bifurcation Point Steady State Solution Trivial Solution Bifurcation Analysis Stimulate BRILLOUIN Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    STARUNOV, V. S. and FABELINSKIJ, I. L.: Uspekhi fiz. nauk. 98, No 3 (1969).Google Scholar
  2. [2]
    SATTINGER, D. H.: Group representation theory and branch points of nonlinear functional equations. SIAM J. Math. Anal.,8, (1977), 2, pp. 179–201.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    CHOW Shui-Nee and HALE, J. K.: Methods of Bifurcation Theory. Springer, N. Y., 1982.CrossRefzbMATHGoogle Scholar
  4. [4]
    GOLUBITSKY, M. and SCHAEFFER, D.: Imperfect bifurcation in the presence of symmetry. Commun. Math. Phys., 67 (1979), pp. 205–232.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    HÁJEK, M. and JANOVSKÝ, V. and NEUBERG, J.: On stability of Stimulated Brillouin Scattering. Technical Report KNM MFF No 076/85, Charles University of Prague, 1985.Google Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • V. Janovský
    • 1
  • I. Marek
    • 1
  • J. Neuberg
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations