Equadiff 6 pp 291-294 | Cite as

Finite element solution of a nonlinear diffusion problem with a moving boundary

  • L. Čermák
  • M. Zlámal
Lectures Presented In Sections Section C Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Dupond, G. Fairweather and J.P. Johnson, Three-Level Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal. 11 (1974), 392–410.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C.D. Maldonado, ROMANS II, A Two-Dimensional Process Simulator for Modeling and Simulation in the Design of VLSI Devices. Applied Physics A 31 (1983), 119–138.CrossRefGoogle Scholar
  3. [3]
    M.F. Wheeler, A priori L 2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations. SIAM J. Numer. Anal. 10 (1973), 723–759.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Zlámal, Curved Elements in the Finite Element Method. SIAM J. Numer. Anal. 10 (1973), 229–240.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Zlámal, Finite Element Methods for Nonlinear Parabolic Equations. R.A.I.R.O. Anal. Numer. 11 (1977), 93–107.MathSciNetzbMATHGoogle Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • L. Čermák
    • 1
  • M. Zlámal
    • 1
  1. 1.Computing Center of the Technical University in BrnoBrnoCzech Republic

Personalised recommendations