Advertisement

Equadiff 6 pp 291-294 | Cite as

Finite element solution of a nonlinear diffusion problem with a moving boundary

  • L. Čermák
  • M. Zlámal
Lectures Presented In Sections Section C Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Dupond, G. Fairweather and J.P. Johnson, Three-Level Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal. 11 (1974), 392–410.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C.D. Maldonado, ROMANS II, A Two-Dimensional Process Simulator for Modeling and Simulation in the Design of VLSI Devices. Applied Physics A 31 (1983), 119–138.CrossRefGoogle Scholar
  3. [3]
    M.F. Wheeler, A priori L 2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations. SIAM J. Numer. Anal. 10 (1973), 723–759.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Zlámal, Curved Elements in the Finite Element Method. SIAM J. Numer. Anal. 10 (1973), 229–240.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Zlámal, Finite Element Methods for Nonlinear Parabolic Equations. R.A.I.R.O. Anal. Numer. 11 (1977), 93–107.MathSciNetzbMATHGoogle Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • L. Čermák
    • 1
  • M. Zlámal
    • 1
  1. 1.Computing Center of the Technical University in BrnoBrnoCzech Republic

Personalised recommendations